Data 100: Principles and Techniques of Data Science
UC Berkeley, Spring 2024
Ed Datahub Gradescope Lectures Playlist Extenuating Circumstances Office Hours Queue
Joseph E. Gonzalez
He/Him/His
Office Hours: Tuesdays from 3:00PM to 4:30PM in Soda 773 (Starting Jan 23rd)
Narges Norouzi
She/Her/Hers
Office Hours: Mondays 10:00AM - 11:00AM in Soda 775
Thursdays from 1:00 to 2:30PM in Warren Hall (Room 101-BC)
Welcome to Week 16 of Data 100!
Lectures will be webcast at: https://berkeley.zoom.us/j/91646148607.
Schedule
Week 1
- Jan 16
-
- Lecture 1 Introduction
- Note 1
- Lecture Participation 1 Lecture Participation 1
- Jan 18
- Lecture Participation 2 Lecture Participation 2
- Jan 19
- Lab 1 Prerequisite Coding (due Jan 23)
- Homework 1A Plotting and Permutation Test (due Jan 25)
- Homework 1B Prerequisite Math (due Jan 25)
Week 2
- Jan 23
- Lecture Participation 3 Lecture Participation 3
-
- Discussion 1 Prerequisites
- Solution, Video
- Jan 25
-
- Lecture 4 Pandas III
- Note 4
- Lecture Participation 4 Lecture Participation 4
- Jan 26
- Lab 2A Pandas (due Jan 30)
- Homework 2A Food Safety (due Feb 1)
Week 3
- Jan 30
-
- Lecture 5 Data Wrangling and EDA (Part 1)
- Note 5
- Lecture Participation 5 Lecture Participation 5
-
- Discussion 2 Pandas I, Worksheet Notebook, Groupwork Notebook
- Worksheet Solution, Video Groupwork Solution, Video
- Feb 1
- Lecture Participation 6 Lecture Participation 6
- Feb 2
- Lab 2B Data Cleaning and EDA (due Feb 6)
- Homework 2B Food Safety II (due Feb 8)
Week 4
- Feb 6
-
- Lecture 7 Visualization I
- Note 7
- Lecture Participation 7 Lecture Participation 7
-
- Discussion 3 Pandas II, EDA, Regex
- Solution, Video
- Feb 8
-
- Lecture 8 Visualization II
- Note 8
- Lecture Participation 8 Lecture Participation 8
-
- Exam Prep 2 Pandas II, RegEx
- Solution, Video
- Feb 9
- Lab 3 Regex, EDA (due Feb 13)
- Homework 3 Text Analysis of Bloomberg Articles (due Feb 15)
Week 5
- Feb 13
- Lecture Participation 9 Lecture Participation 9
-
- Discussion 4 Visualization and Transformation, Worksheet Notebook
- Feb 15
-
- Lecture 10 Modeling, SLR
- Note 10
- Lecture Participation 10 Lecture Participation 10
-
- Exam Prep 3 Visualization
- Solution, Video
- Feb 16
- Lab 4 Transformations (due Feb 20)
- Homework 4 Bike Sharing (due Feb 22)
Week 6
- Feb 20
-
- Lecture 11 Constant model, Loss, and Transformations
- Note 11
- Lecture Participation 11 Lecture Participation 11
-
- Discussion 5 Probability, Sampling, and Simple Linear Regression
- Solution, Video
- Feb 22
-
- Lecture 12 OLS (Multiple Regression)
- Note 12
- Lecture Participation 12 Lecture Participation 12
- Feb 23
- Lab 5 Modeling, Loss Functions, and Summary Statistics (due Feb 27)
- Homework 5 Sampling (due Feb 29)
Week 7
- Feb 27
-
- Lecture 13 Gradient descent / sklearn
- Note 13
- Lecture Participation 13 Lecture Participation 13
- Feb 29
-
- Lecture 14 Feature Engineering
- Note 14
- Lecture Participation 14 Lecture Participation 14
- Mar 1
- Lab 6 OLS (due Mar 5)
Week 8
- Mar 5
-
- Lecture 15 Case Study (HCE): CCAO
- Note 15
- Lecture Participation 15 Lecture Participation 15
-
- Discussion 7 Midterm Review
- Solution
- Mar 7
- No Lecture
-
Midterm Exam Midterm (7-9 PM PST)
- Mar 8
- Lab 7 Gradient descent and Sklearn (due Mar 12)
- Project A1 Housing I (due Mar 14)
Week 9
- Mar 12
-
- Lecture 16 Cross-Validation and Regularization
- Note 16
- Lecture Participation 16 Lecture Participation 16
-
- Discussion 8 Gradient descent, Feature Engineering, Housing
- Solution, Video
- Mar 14
-
- Lecture 17 Random Variables
- Note 17
- Lecture Participation 17 Lecture Participation 17
-
- Exam Prep 6 Gradient Descent
- Solution , Video
- Mar 15
- Lab 8 Model Selection, Regularization, and Cross-Validation (due Mar 19)
- Project A2 Housing II (due Mar 21)
Week 10
- Mar 19
-
- Lecture 18 Estimators, Bias, and Variance
- Note 18
- Lecture Participation 18 Lecture Participation 18
-
- Discussion 9 Cross-Validation and Regularization
- Solution, Video
- Mar 21
-
- Lecture 19 Parameter Inference and the Bootstrap
- Note 19
- Lecture Participation 19 Lecture Participation 19
-
- Exam Prep 7 Cross Validation and Regularization
- Solution , Video
- Mar 22
- Lab 9 Probability (due Apr 2)
- Homework 6 Probability (due Apr 4)
Week 11
- Mar 25
- Spring Break
- Mar 26
- Spring Break
- Mar 27
- Spring Break
- Mar 28
- Spring Break
- Mar 29
- Spring Break
Week 12
- Apr 2
- Lecture Participation 20 Lecture Participation 20
-
- Discussion 10 RVs, Bias, and Variance
- Solution, Video
- Apr 4
- Lecture Participation 21 Lecture Participation 21
-
- Exam Prep 8 Probability and Bias-Variance
- Solution , Video
- Apr 5
- Lab 10 SQL (due Apr 9)
- Homework 7 SQL (due Apr 11)
Week 13
- Apr 9
-
- Lecture 22 Logistic Regression I
- Note 22
- Lecture Participation 22 Lecture Participation 22
-
- Discussion 11 SQL, Discussion Notebook
- Worksheet Solution, Notebook Solution, Video
- Apr 11
-
- Lecture 23 Logistic Regression II
- Note 23
- Lecture Participation 23 Lecture Participation 23
- Apr 12
- Lab 11 Logistic Regression (due Apr 16)
- Project B1 Spam & Ham I (due Apr 18)
Week 14
- Apr 16
- Lecture 24 PCA I
-
- Lecture Participation 24 Lecture Participation 24
- Note 24
-
- Discussion 12 Logistic Regression
- Solution, Video
- Apr 18
- Lecture Participation 25 Lecture Participation 25
-
- Exam Prep 10 Logistic Regression
- Solution , Video
- Apr 19
- Lab 12 PCA (due Apr 23)
- Project B2 Spam & Ham II (due Apr 25)
Week 15
- Apr 23
-
- Lecture 26 Clustering
- Note 26
- Lecture Participation 26 Lecture Participation 26
- Apr 25
- Lecture 27 Intro to LLMs and Conclusion
- Lecture Participation 27 Lecture Participation 27
-
- Exam Prep 11 PCA and Clustering
- Solution , Video
- Apr 26
- Lab 13 Clustering (due Apr 30)
Week 16
- Apr 29
- RRR
- Apr 30
- RRR
- May 1
- RRR
- May 2
- RRR
- May 3
- RRR
Week 17
- May 9
- Final Exam Final (8-11 AM PST)