Data 100: Principles and Techniques of Data Science
UC Berkeley, Fall 2024
Ed Datahub Gradescope Lectures Playlist Additional Accommodations Office Hours Queue
Welcome to Week 13 of Data 100!
Lectures will be webcast at: https://berkeley.zoom.us/j/91349586134.
Schedule
Week 1
- Aug 29
-
- Lecture 1 Introduction
- Note 1
- Lecture Participation 1 Lecture Participation 1
- Aug 30
- Lab 1 Prerequisite Coding (due Sep 3)
- Homework 1A Plotting and the Permutation Test (due Sep 5)
- Homework 1B Prerequisite Math (due Sep 5)
Week 2
- Sep 3
- Lecture Participation 2 Lecture Participation 2
-
- Discussion 1 Prerequisites
- Mini-Lecture, Solutions, Walkthrough
- Sep 5
- Lecture Participation 3 Lecture Participation 3
-
- Exam Prep 1 Pandas
- Solutions, Walkthrough
- Sep 6
- Lab 2A Pandas (due Sep 10)
- Homework 2A Food Safety (due Sep 12)
- Drop Deadline (w/o fee) 11:59pm PT
Week 3
- Sep 10
-
- Lecture 4 Pandas III
- Note 4
- Lecture Participation 4 Lecture Participation 4
-
- Discussion 2 Pandas I
- Mini-Lecture, Solutions, Notebook, Groupwork Notebook, Groupwork Walkthrough, Regular Walkthrough
- Sep 12
-
- Lecture 5 Data Cleaning and EDA
- Note 5
- Lecture Participation 5 Lecture Participation 5
-
- Exam Prep 2 Pandas and EDA
- Solutions, Walkthrough
- Sep 13
- Lab 2B Data Cleaning and EDA (due Sep 17)
- Homework 2B Food Safety II (due Sep 19)
- Add Deadline (w/o fee) 11:59pm PT
Week 4
- Sep 17
- Lecture Participation 6 Lecture Participation 6
-
- Discussion 3 Pandas II, EDA
- Mini-Lecture, Solutions, Walkthrough
- Sep 19
-
- Lecture 7 Visualization I
- Note 7
- Lecture Participation 7 Lecture Participation 7
-
- Exam Prep 3 RegEx
- Solutions, Walkthrough
- Sep 20
- Lab 3 Regex, EDA (due Sep 24)
- Homework 3 Text Analysis of Bloomberg Articles (due Sep 26)
- Drop Deadline (with fee) 11:59pm PT
Week 5
- Sep 24
-
- Lecture 8 Visualization II
- Note 8
- Lecture Participation 8 Lecture Participation 8
-
- Discussion 4 Regex, Visualization, and Transformation
- Mini-Lecture, Solutions, Walkthrough
- Sep 26
- Lecture Participation 9 Lecture Participation 9
-
- Exam Prep 4 Data Visualization
- Solutions, Walkthrough
- Sep 27
- Lab 4 Transformations (due Oct 1)
- Homework 4 Bike Sharing (due Oct 3)
- Add Deadline for Graduate Students 11:59pm PT
Week 6
- Oct 1
-
- Lecture 10 Modeling, SLR
- Note 10
- Lecture Participation 10 Lecture Participation 10
-
- Discussion 5 Probability, Sampling, and Visualization
- Mini-Lecture, Solutions, Walkthrough
- Oct 3
-
- Lecture 11 Constant model, Loss, and Transformations
- Note 11
- Lecture Participation 11 Lecture Participation 11
-
- Exam Prep 5 SLR
- Solutions, Walkthrough
- Oct 4
- Lab 5 Modeling, Summary Statistics, and Loss Functions (due Oct 8)
- Homework 5A Modeling (due Oct 10)
Week 7
- Oct 8
-
- Lecture 12 OLS (Multiple Regression)
- Note 12
- Lecture Participation 12 Lecture Participation 12
-
- Discussion 6 Models, OLS
- Mini-Lecture, Solutions, Walkthrough
- Oct 10
-
- Lecture 13 Gradient descent / sklearn
- Note 13
- Lecture Participation 13 Lecture Participation 13
-
- Exam Prep 6 OLS, Gradient Descent
- Solutions, Walkthrough
- Oct 11
- Lab 6 OLS (due Oct 15)
- Homework 5B OLS (due Oct 17)
Week 8
- Oct 15
-
- Lecture 14 Feature Engineering
- Note 14
- Lecture Participation 14 Lecture Participation 14
- Oct 17
-
- Lecture 15 Case Study (HCE): CCAO
- Note 15
- Lecture Participation 15 Lecture Participation 15
- Oct 18
- Lab 7 Gradient descent and Sklearn (due Oct 22)
- Project A1 Housing I (due Oct 25)
Week 9
- Oct 22
-
- Lecture 16 Cross-Validation and Regularization
- Note 16
- Lecture Participation 16 Lecture Participation 16
-
- Discussion 8 Midterm Review
- Solutions
- Oct 23
- Midterm Exam Midterm (7-9 PM PST)
- Oct 24
-
- Lecture 17 Random Variables
- Note 17
- Lecture Participation 17 Lecture Participation 17
-
- Exam Prep 7 Cross Validation and Regularization
- Solutions, Walkthrough
- Oct 25
- Lab 8 Model Selection (due Oct 29)
- Project A2 Housing II (due Oct 31)
Week 10
- Oct 29
-
- Lecture 18 Estimators, Bias, and Variance
- Note 18
- Lecture Participation 18 Lecture Participation 18
-
- Discussion 9 Cross-Validation and Regularization
- Mini-Lecture, Solutions, Walkthrough
- Oct 31
-
- Lecture 19 Parameter Inference & the Bootstrap
- Note 19
- Lecture Participation 19 Lecture Participation 19
-
- Exam Prep 8 Probability and Bias-Variance
- Solutions, Walkthrough
- Nov 1
- Lab 9 Probability (due Nov 5)
- Homework 6 Probability (due Nov 7)
- Grade Option Change Deadline 11:59pm PT
Week 11
- Nov 5
- Lecture Participation 20 Lecture Participation 20
-
- Discussion 10 RVs, Bias, and Variance
- Mini-Lecture, Solutions, Walkthrough
- Nov 7
- Lecture Participation 21 Lecture Participation 21
- Nov 8
- Lab 10 SQL (due Nov 12)
- Homework 7 SQL (due Nov 16)
Week 12
- Nov 12
-
- Lecture 22 Logistic Regression I
- Note 22
- Lecture Participation 22 Lecture Participation 22
-
- Discussion 11 SQL
- Mini-Lecture, Notebook, Solutions, Walkthrough
- Nov 14
-
- Lecture 23 Logistic Regression II
- Note 23
- Lecture Participation 23 Lecture Participation 23
- Nov 15
- Lab 11 Logistic Regression (due Nov 19)
- Nov 17
- Project B1 Spam & Ham I (due Nov 23)
Week 13
- Nov 19
- Lecture Participation 24 Lecture Participation 24
-
- Discussion 12 Logistic Regression
- Mini-Lecture, Solutions
- Nov 21
- Lecture 25 PCA II
- Nov 22
- Lab 12 PCA (due Nov 26)
- Nov 24
- Project B2 Spam & Ham II (due Dec 5)
Week 14
- Nov 26
- Lecture 26 Clustering
- No Discussion
- Nov 28
- No Lecture
- Nov 29
- Lab 13 Clustering (due Dec 10)
Week 15
- Dec 3
- Lecture 27 Neural Networks
- Discussion 13 PCA + Clustering
- Dec 5
- Lecture 28 LLMs + closing
Week 16
- Dec 9
- RRR
- Dec 10
- RRR
- Dec 11
- RRR
- Dec 12
- RRR
- Dec 13
- RRR
Week 17
- Dec 18
- Final Exam Final (8-11 AM PST)