Data 100: Principles and Techniques of Data Science

UC Berkeley, Fall 2025

Datahub Pensieve Ed Office Hours Queue Lectures Playlist

Josh Grossman profile photo

Josh GrossmanHe/Him/His

jdgg AT berkeley DOT edu

data100.instructors@berkeley.edu

Welcome to Week 13 of Data 100!

Lectures will be webcast on Zoom.

Schedule Jump to Current Week

Week 1

Thu Aug 28
Lecture 1 Introduction
Note 1
Lecture Participation 1 Slido
Lab 1 Prerequisite Coding (due Wed 9/3)
Homework 1 Prerequisite Math and Coding (due Thu 9/4)

Week 2

Tue Sep 2
Lecture 2 Pandas I
Note 2
Lecture Participation 2 Slido
Discussion 1 Prerequisites
Mini-Lecture, Solutions
Thu Sep 4
Lecture 3 Pandas II
Note 3
Lecture Participation 3 Slido
Lab 2A Pandas (due Wed 9/10)
Homework 2A Food Safety (due Thu 9/11)
Fri Sep 5
Drop Deadline (without fee) 11:59 PM

Week 3

Tue Sep 9
Lecture 4 Pandas III
Note 4
Lecture Participation 4 Slido
Discussion 2 Pandas I
Mini-Lecture, Notebook, Groupwork Notebook, Solutions, Notebook Solutions, Groupwork Notebook Solutions
Thu Sep 11
Lecture 5 Data Cleaning and EDA
Note 5
Lecture Participation 5Slido
Lab 2B Data Cleaning and EDA (due Wed 9/17)
Homework 2B Food Safety II (due Thu 9/18)
Fri Sep 12
Add Deadline (without fee) 11:59 PM

Week 4

Mon Sep 15
Exam Prep 1 Pandas
Solutions, Walkthrough
Tue Sep 16
Lecture 6 Regex
Note 6
Lecture Participation 6 Slido
Discussion 3 Pandas II, EDA
Mini-Lecture, Monopoly Demo Notebook, Solutions
Wed Sep 17
Drop Deadline (with fee) 11:59 PM
Thu Sep 18
Lecture 7 Visualization I
Note 7
Lecture Participation 7 Slido
Lab 3 Regex, EDA (due Wed 9/24)
Homework 3 Text Analysis of New York Times Articles (due Thu 9/25)

Week 5

Mon Sep 22
Exam Prep 2 EDA and Regex
Solutions, Walkthrough
Tue Sep 23
Lecture 8 Visualization II
Note 8
Lecture Participation 8 Slido
Discussion 4 Regex, Visualization, and KDE
Mini-Lecture, Bigfoot Demo Notebook, Solutions
Thu Sep 25
Lecture 9 Sampling
Note 9
Lecture Participation 9 Slido
Lab 4 Transformations (due Wed 10/1)
Homework 4 Bike Sharing (due Thu 10/2)
Fri Sep 26
Add/Drop Deadline for Graduate Students 11:59 PM

Week 6

Mon Sep 29
Exam Prep 3 Visualization
Solutions, Walkthrough
Tue Sep 30
Lecture 10 Modeling, SLR
Note 10
Lecture Participation 10 Slido
Discussion 5 Transformations, Sampling, and SLR
Mini-Lecture, Solutions
Thu Oct 2
Lecture 11 Constant Model, Loss, Transformations
Note 11
Lecture Participation 11 Slido
Lab 5 Modeling, Summary Statistics, and Loss Functions (due Wed 10/8)
Homework 5 Modeling and OLS (due Mon 10/13)

Week 7

Mon Oct 6
Exam Prep 4 Modeling and Midterm Prep
Solutions, Walkthrough
Tue Oct 7
Lecture 12 Ordinary Least Squares
Note 12
Lecture Participation 12 Slido
Discussion 6 Modeling and OLS
Mini-Lecture, Solutions
Thu Oct 9
Lecture 13 Case Study HCE: CCAO
Note 13
Lecture Participation 13 Slido
Lab 6 OLS (due Fri 10/17)

Week 8

Tue Oct 14
Lecture 14 Gradient Descent
Note 14
Lecture Participation 14 Slido
Discussion 7 Midterm 1 Review
Solutions
Thu Oct 16
No Lecture
Midterm 1 See Syllabus for details
Lab 7 Gradient Descent / Sklearn (due Thu 10/23)
Project A1 Housing I (due Fri 10/24)

Week 9

Mon Oct 20
Exam Prep 5 OLS and Gradient Descent
Solutions, Walkthrough
Tue Oct 21
Lecture 15 Feature Engineering
Note 15
Lecture Participation 15 Slido
Discussion 8 Gradient Descent, Feature Engineering, and Housing
Mini-Lecture, Solutions
Thu Oct 23
Lecture 16 Cross-Validation, Regularization
Note 16
Lecture Participation 16 Slido
Lab 8 Model Selection (due Wed 10/29)
Project A2 Housing II (due Fri 10/31)

Week 10

Mon Oct 27
Exam Prep 6 Feature Engineering, Cross Validation, and Regularization
Solutions, Walkthrough
Tue Oct 28
Lecture 17 Random Variables
Note 17
Lecture Participation 17 Slido
Discussion 9 Cross-Validation, Regularization, and Random Variables
Mini-Lecture, Solutions
Thu Oct 30
Lecture 18 Estimators, Bias, and Variance
Note 18
Lecture Participation 18 Slido
Lab 9 Probability (due Wed 11/5)
Homework 6 Coding, Probability (due Fri 11/7)
Fri Oct 31
Grade Option Change 11:59 PM

Week 11

Mon Nov 3
Exam Prep 7 Probability and Bias-Variance
Solutions, Walkthrough
Tue Nov 4
Lecture 19 Parameter Inference & Bootstrap
Note 19
Lecture Participation 19 Slido
Discussion 10 Bias and Variance
Mini-Lecture, Solutions
Thu Nov 6
Lecture 20 SQL I
Note 20
Lecture Participation 20 Slido
Lab 10 SQL (due Fri 11/14)
Homework 7 SQL (due Mon 11/17)

Week 12

Mon Nov 10
Exam Prep 8 Midterm 2 Prep
Solutions
Tue Nov 11
Holiday Veterans Day
No Lecture
Wed Nov 12
Discussion 11 SQL (RECORDED)
Mini-Lecture, Notebook, Walkthrough, Solutions
Thu Nov 13
Lecture 21 SQL II
Note 21
Lecture Participation 21 Slido

Week 13

Tue Nov 18
Lecture 22 Logistic Regression I
Note 22
Lecture Participation 22 Slido
Discussion 12 Midterm 2 Review
Solutions
Wed Nov 19
Lab 11 Logistic Regression (due Mon 12/1)
Thu Nov 20
No Lecture
Midterm 2 See Syllabus for details
Project B1 Spam & Ham I (due Tue 12/2)

Week 14

Tue Nov 25
Lecture 23 Logistic Regression II
Lecture Participation 23 Slido
Discussion 13 Logistic Regression (RECORDED)
Lab 12 PCA (due Fri 12/5)
Thu Nov 27
Holiday Thanksgiving
No Lecture

Week 15

Mon Dec 1
Project B2 Spam & Ham II (due Tue 12/9)
Tue Dec 2
Lecture 24 PCA and Clustering I
Lecture Participation 24 Slido
Discussion 14 PCA and Clustering
Thu Dec 4
Lecture 25 PCA and Clustering II
Lecture Participation 25 Slido
Lab 13 Clustering (due Wed 12/10)

Week 16

Tue Dec 9
Final Review
Thu Dec 11
Final Review

Week 17

Wed Dec 17
Final Exam Final (8:00 AM - 11:00 AM)