Materials

Lectures, Readings, Discussions, Vitamins, Lab, Homework, Project

TA Section Slides

Date Lecture Reading Discussion & Lab Vitamin Homework & Project
1/16 Course Overview and Review of Python and Probability
screencast slides notebook
chapter 1      
1/18 Data Design and Sources of Bias
screencast slides notebook
chapter 2      
1/23 Data Manipulation using Pandas
screencast slides notebook
chapter 3 Lab 1: Setup   HW 1: Prereqs and Image Classification
1/25 Data Manipulation using Pandas
screencast slides notebook
chapter 3 Disc 1: Probability and Sampling
(Solutions)
vitamin 1  
1/30 Data Cleaning and EDA
screencast slides notebook
chapter 4 Lab 2: Pandas   HW 2: Food Safety
2/01 EDA and Visualization
screencast slides notebook
chapter 5 Disc 2: Bayes’ Rule and Data Visualization (Solutions) vitamin 2  
2/06 Visualization and Data Transformations
screencast notebook
chapter 6 Lab 3: Plotting   HW 3: Bike Sharing
2/08 Visualization and Data Transformations
screencast slides notebook
  Disc 3: Data Visualization and Log Transforms (Solutions) vitamin 3  
2/13 Web Technologies
screencast slides notebook
  Lab 4: Plotting, Smoothing, Transformation   Project 1: Twitter Analysis
2/15 Working With Text
screencast slides notebook
  Disc 4: Regular Expressions (Solutions) vitamin 4  
2/20 REST & Relational Databases and SQL
screencast slides notebook
  No Lab: Holiday (President’s Day)    
2/22 More Advanced SQL
screencast slides notebook
  Disc 5: SQL (Solutions) vitamin 5  
2/27 Modeling and Estimation
slides notebook 1 notebook 2 screencast
chapter 10 Lab 6: Regular Expressions, SQL   HW 4: SQL
3/1 Gradient Descent for Model Estimation
screencast slides notebook
  Disc 6: Loss Functions & Gradient Descent (Solutions)    
3/6 Midterm Review
screencast slides
       
3/8 Midterm
       
3/13 Generalization and Empirical Risk Minimization
screencast slides
  Lab 8: Modeling and Estimation   Homework 5: Modeling
3/15 The Bias Variance Tradeoff and Regularization
slides screencast notebook
  Disc 7: Bias Variance Tradeoff & Regularization (Solutions) vitamin 6  
3/20 Linear Regression and Feature Engineering
screencast slides
  Lab 9: Bootstrap   Homework 6: Feature Engineering & Linear Models
3/22 Cross-Validation, Regularization, and Begin Classification
screencast slides notebook
  Disc 8: Regularization, Cross Validation, Geometric Interpretation (Solutions) vitamin 7  
4/3 Classification and Logistic Regression
screencast slides notebook 1 notebook 2
  Lab 10: Feature Engineering and Cross-Validation    
4/5 Classification and Logistic Regression (Part 2)
screencast slides notebook
  Disc 9: Logistic Regression & Bootstrap (Solutions) vitamin 8  
4/10 Probability theory, Monte Carlo Simulation, and Bootstraping
screencast slides
  Lab 11: Logistic Regression    
4/12 Hypothesis Testing
slides screencast notebook
  Disc 10: Hypothesis Testing & Bootstrap (Solutions)    
4/17 P-values, Probability, Priors, Rabbits, Quantifauxcation, and Cargo-Cult Statistics
screencast slides
  Lab 12: Hypothesis Testing, Baby Weights vitamin 9 Project 2: Spam vs. Ham Classification
4/19 Big Data
screencast slides notebook
  Disc 11: Hypothesis Testing (Solutions) vitamin 10  
4/24 [See Syllabus]        
4/26 [See Syllabus]   Disc 12: Final Review (Solutions | Slides)