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Recap ... so far we have covered

» Data collection: Surveys, sampling, administrative data
» Data cleaning and manipulation: Pandas, text & regexes.

> Exploratory Data Analysis
» Joining and grouping data
» Structure, Granularity, Temporality, Faithfulness and Scope
» Basic exploratory data visualization

> Data Visualization:
> Kinds of visualizations and the use of size, area, and color
» Data transformations using Tukey Mosteller bulge diagram

> An intfroduction to database systems and SQL



Today —
Models & Estimation



What is a model¢



What is a model?¢

A modelis an an idealized representation of a system

Atoms don’'t actually Proteins are far We haven't really
work like this... more complex seen one of these.



“Essentially,
all models are wrong,

but some are useful.”

George Box

Staftistician
1919-2013



Why do we builld modelse



Why do we builld models?

» Models enable us fo make accurate predictions
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» Provide insight into complex phenomena
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A few types of models: “physical” or
“meChOniSTiC” Halnford,Wa[shington'(Hl) | Livlingston,E_ouisiana](Ll) |
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FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35-350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject




Models: Statistical correlations (A)

A ROI coordinates from Dosenbach et al, 2007
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Models: statistical correlations (B)
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Models: statistical correlations (C)
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Models and the World

> Data Generation Process: the real-world phenomena from which
the data is collected
» Example: everyday there are some number of clouds and it rains or doesn’t
» We don’t’ know or can’t compute this, could be stochastic or adversarial

» Model: a theory of the data generation process

> Example: if there are more than X clouds then it will rain
» How do we pick this modele EDA? Arte
» May not reflect reality ... “all models are wrong ..."

» Estimated Model: an instantiation of the model
> Example: If there are more than 42 clouds then it will rain
» How do we estimate it?
»  What makes the estimate “good”?



Example — Restaurant Tips

Follow along with the notebook ...



Step 1: Understanding the Data (EDA)

data = sns.load dataset("tips")
print ("Number of Records:", len(data))
data.head()

Number of Records: 244

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 2459 3.61 Female No Sun Dinner 4

Collected by a single waifer
over a month

Whye

> Predict which tables will
tip the highest

» Understand relationship
between tables and tips
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Derived Variable: Percent Tip

tip
total bill

* 100

pct_tip =

» Natural representation of tips
> Why? Tradifion in US is to tip %

» Issues In the plote
» Qutliers

> Explanation?
» Small bills ... bad data?

> Transformationse
» Remove outliers
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Step 1: Define the Model

START SIMPLE!!



Start with a Simple Model: Constant

* Means frue parameter
determined by universe

percentage tip = 6~

» Rationale: There is a percent fip 6* that all customers pay

> Correcte

» No! We have different percentage ftips in our data
» Whye Maybe people make mistakes calculating their billse

> Useful?e

» Perhaps. A good estimate 6* could allow us to predict future fips ...

» The parameter 6* is determined by the universe
» we generally don’t get to see 6* ...
» we will need to develop a procedure to estimate 6* from the data



How do we estimate the parameter 6*

> Guess a number using prior knowledge: 15%

> Use the data! Howe

» Estimate the value 6* as:
» the percent tip from a randomly selected receipf
» the mode of the distribution observed
» the mean of the percent tips observed
» the median of the percent tips observed

» Which is the beste How do | define beste
» Depends on our goals ...



Defining an the Objective (Goal)

> ldeal Goal: estimate a value for 6* such that the model
makes good predictions about the future.

> Great goal! Problem?
» We don’t know the future. How will we know if our estimate is goode

» There is hope! ... we will refurn to this goal ... in the future ©

» Simpler Goal: estimate a value for 6* such that the
model “fits” the dato
» What does it mean to “fif” the datae

> We can define a loss function that measures the error in our
model on the data



Step 2: Define the Loss

“Take the Loss”



Loss Functions

» Loss function: a function that characterizes the cost, error, or
loss resulting from a particular choice of model or model
parameters.

» Many definifions of loss functions and the choice of loss
function affects the accuracy and computational cost of
estimation.

» The choice of loss function depends on the estimation task
» quantitative (e.q., tip) or qualitative variable (e.g., political affiliation)
» Do we care about the outlierse
> Are all errors equally costlye (e.g., false negative on cancer test)



1200

Squared Loss

Widely used loss! 800
The “error” in @ 600
The predicted value our prediction [
400
2 200
L (97 y) o (y o 9) —— Squared Loss

—  (Observation

0 10 20 30 40 50

An observed data point
Choice for 6

> Also known as the the L? |oss (pronounced “el two”)

» Reasonablee

» O =y =»good prediction = good fit = no loss!
» O farfromy = bad prediction = bad fif = lots of loss!



=  Abs 0SS

Absolute Loss 30— Onservation

It sounds worse thanitis ...
20

Loss

Absolute value |

0 10 20 30 40 50
Choice for 6

> Also known as the the L' loss (pronounced el one”)

» Reasonable?

» 6=y = good prediction = good fit = no loss!
» O farfromy = bad prediction = bad fit = some loss



Can you think of another
Loss Function®e



5 (y—10) y—0| <«
a(ly—0]—%) otherwise

HUber LOSS 150 Huber Loss
— (Observation
» Parameter a that we need to 125
choose. 100
@ 75
» Reasonable?¢ - £
» 6=y =»good prediction 25

= good fif = no loss!

» O farfromy = bad prediction
= bad fit =& some loss 25

> A hybrid of the L2 and L1 losses...

0 10 20 30 40 50
Choice for 6



The Huber loss function, interactively
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Comparing the Loss Functions

>

50
All functions are
zerowhen 6 =y 40
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for being far from 20
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-10
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Average Loss

» A natural way to define the loss on our entire dataset is 1o
compute the average of the loss on each record.

L6.D)= > Lo.)

The set of n data points

> In some cases we might take a weighted average (whenge)
» Some records might be more important or reliable

» What does the average loss look likee



Double Jeopardy

Name that Loss!



Loss

Name that |oss
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Name that |oss
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Difference between Huber and L1
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INIMIZETS
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Sensitivity to Qutliers
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Recap on Loss Functions

» Loss functions: a mechanism fo measure how well a
particular instance of a model fits a given dafaset

» Squared Loss: sensifive to outliers but a smooth function
> Absolute Loss: less sensifive to outliers but not smooth

> Huber Loss: less sensitive to outliers and smooth but has
an extra parameter to deal with

» Why is smoothness an issue =2 Optimization! ...



Summary of Model Estimation (so far...)

1. Define the Model: simplified representation of the world
» Use domain knowledge but ... keep it simple!
» Intfroduce parameters for the unknown quantities

2. Define the Loss Function: measures how well a particular instance
of the model “fits” the data
> Weintroduced L2, L', and Huber losses for each record
» Take the average loss over the entire dataset

3. Minimize the Loss Function: find the parameter values that
minimize the loss on the data
» So far we have done this graphically
» Now we will minimize the loss analytically



Step 3: Minimize the Loss



A Brief Review of Calculus



Minimizing a Function
» Suppose we want to minimize:

fO)=(0-37° "

> Solve for derivative = 0:;

0
—f(0)=2(60—-3)=0
7 1(6) =2(0 = 3)
» Procedure: |
1. take derivative -2 prad —
_ —-— 3ffa6
2. Set equal to zero ~4 e ®  Minimizer

3. Solve for parameters 0 1 5 3 4 5 6



Quick Review of the Chain Rule

» How do | compute the derivative of composed functionse

0 ",
%h(e) — 90 (9(0))

E0

Bonus material (not covered in lecture) but useful for studying



First application of chain rule

0 o . , 5
(% exp (u) u:Sin(92)> 5g Sin (9 )

o0 .
u:sin(92)) % > (6)2)

Using the ) 20
Chdlﬂ RU‘e Substituting u = exp (Sin (6’ )) %sin (9 )

& exp (sin (67))

Derivative of exponent = (exp(u)

Second application of the chainrule = eXp (Sin ((92)) <§ Sin(u) . ) %@2
U u=02
L : : . 2 a 2
Derivative of sine function — exp (Sln ((9 )) (COS(U) _02) %6’
Computing the remaining derivative — exp (sin (92)) COS ((92) %92

= exp (sin (92)) COS (92) 20

Bonus material (not covered in lecture) but useful for studying



9, 9,
gl O =20-3)  —-f(0)=—2(0-3)
All of the above functions have zero derivatives at 6 = 3

= is 6=3 minimizer for all the above functionse

NoO!

Need to check second derivative is positive...



Generally we are inferested in convex functions with
respect to the parameters 6.



Convex setfs and polygons

> No line segment between any two
0oiNts on the boundary ever leaves

the polygon.

» Equivalently, all angles are < 180°.

» The interior is a convex set.




Non-Convex setfs and polygons

» There is at least one line
segment between two points
on the boundary that leaves
the seft.




Formal Definition of Convex Functions

Epigraph Epigraph /
/T\

All possible orange lines are: /‘/

« always in epigraph or on black line Nonconvex

Convex « always obove or equal To black line

J

> A function f is convex if and only if:
tfla) + (1 —=1)f(b) = f (ta+ (1 —1t)d)
Va, Vb, t € [0,1]



http://bit.ly/ds100-sp 18-cvx
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Are our previous loss functions convexe

50 ‘ V

. Yes!

30
- Average Losse
o)
g Yes!

— Squared Loss
0 - Abs Loss
. | Huber Loss (Sum of convex
20 —— Observation functions is convex)
0 10 20 30 40 >0

Choice for 6



s a Gaussian convexe

1.0 -  exp(=x2)
0.8 ;
0.6 ;

0.4 ;

0.2 ;

0.0 ;




Sum of Convex Functions is Convex

» |In class professor Gonzalez was asked: “Are you sure that
the sum of convex functions is convexe”

» The answer is yes! Always!
» Professor Gonzalez should have had a proof ready! ® It's Easy!

» Proposed counter exomples . (not en’nrely obvious)

— (2-x)? ==
% (-2 —x)? |—5—x|
Z )24 (=2 — x)2 — 2 —-X|+|-2-X]
20
15
10

10
\/ 5 \/

0 0
- -2 -1 1 2 -2 -1 -1 1 1 2

Bonus material (not covered in lecture) but useful for studying




Formal Proof

» Suppose you have two convex functions f and g:

tf(a)+ (1 =1)f(b) = f(ta— (1 —t)a)
tg(a) + (1 —1t)g(b) = g (ta — (1 —t)a)
Va, Vb, t € [0,1]

» We would like to show:
th(a) + (1 — t)h(b) > h(ta — (1 — t)a)
> Where: h(x) = f(x) + g(x)

Bonus material (not covered in lecture) but useful for studying



» We would like to show:
th(a) + (1 — )h(b) > h(ta — (1 — t)a)
> Where: h(z) = f(x) + g(z)
> Starting on the left side

t(f(a) +g(a)) + (1 —1) (f(b) +9(b))
tf(a) + (1 =) f(b)] + [tg(a) + (1 = 1)g(b)
(

th(a) + (1 — t)h(b)

> [ (ta+ (1 —=1¢)b) + [tg(a) + (1 —1)g(b)]
> f(ta+ (1 —t)b) + g (ta+ (1 — t)b)
= h(ta + (1 — t)b)

Bonus material (not covered in lecture) but useful for studying



Minimizing the
Average Sqguared Loss



Minimizing the Average Squared Loss

n

Lo(@)= -5 (i~ 0= o5 Lo(B) = = 3" 2 (4~ )

> Take the derivative

== - 0)



Minimizing the Average Squared Loss

1o o 0 1l 0 >
Lp(0) = 5;(%—9) - %LD(H) = 5;%(%—9)
> Take the derivative 2 n

> Set the derivative
equal to zero i=1



Minimizing the Average Squared Loss

> Take the derivative

» Set the derivative
equal to zero

» Solve for parameters

S [
9:5;%

Hat
(Estimator)

n

0=->3" (5

1=1



Minimizing the Average Squared Loss

Hat
(Estimator) 1 n

A Mean
H = — E ;
Y (Average)!

» The estimate for percent tip that minimizes the squared
loss Is the mean (average) of the percent fips

> We guessed that already!



Minimizing the Average Absolute Loss

o) = 25 w0l & 2 i) = L3 20
D —— . — N _ _ _ —
L Z 00 7 L 0 g
> Take the derivative "o o, «©
S/ O
> How? 05 o;z:% @ CO(\%\Oij

0 1« .
%LD(‘Q) = ;Slgn(yz’ —0)

-0.5 —

What is sign(0) @ — -0 ———— ® wnmas

2.0 2.5 3.0 3.5 4.0



Minimizing the Average Absolute Loss

> Take the derivative
> How?e

5, ] —

%LD(H) = == Zsign(yi — 0)

n -
1=1

» Derivative at the corner?
»  Whatis the sign of 0¢

» Convention:

sign(0) =0

of/o6
® Minimizer

2.0 2.5 3.0 3.5 4.0



Minimizing the Average Absolute Loss

0 1 <
> Take the derivative  a5Lp(0) = —— Z sign(y; — 0)

00 n
> Set derivative to b=
zero and solve for 1 n
parameters — Z 14+ Z +1
y; <0 yi >0

) () o (5 (s

yi; <0 Yi >0



Minimizing the Average Absolute Loss

» Take the derivative n
> Set derivative to zero and Z 1] = Z 1
solve for parameters ;<0 ;>0
Median!
o 2 2
Percent Tipsin o o O
sorted order v Vs Vi Vs
e 2 2 )
PercentTipsin o o o

sorted order
Y Yo Y3



Absolute Loss Even and Odd Data

Even Points Odd Points
20
—  Absolute Loss —  Absolute Loss
15 derivative derivative
— (Observations 15 — (Observations
10 . 10
Wy optimal values 2
—
0 v Pick one?¢ °
0 — o — 0
| | | | | | | | |
0 10 20 30 40 50 0 10 20 30 40 50
Percent Tip (6) Percent Tip (6)

The median minimizes the absolute loss 2 Robust!

not sensitive to outliers



Calculus for Loss Minimization

» General Procedure:

» Verify that function is convex (we often will assume this...)
» Compute the derivative
» Set derivative equal to zero and solve for the parameters

> Using this procedure we discovered:

R 1 R
Or2 = — ; = D 071 = median(D
L2 = Zy mean(D) 1 = median(D)



Minimizing the Average Huber Loss

3 (y—0)° y—0] <o
a(ly—0]—%) otherwise

Lo (0,y) {

» Take the derivative of the average Huber Loss

n

0 1
%LD(Q) — n Z {

1=1



Minimizing the Average Huber Loss

3 (y—0)° y—0] <o
a(ly—0]—%) otherwise

Lo (0,y) {

» Take the derivative of the average Huber Loss

n

0 1 — (yi — 0) i — 0] < «
%LD(Q)EZ{

1=1



Minimizing the Average Huber Loss

5 (y—0) y -0l <a
a(ly—0]— %) otherwise

Lo (0,y) {

» Take the derivative of the average Huber Loss

n

0 . —(yi — 0) i — 0] < o
%LD(Q)EZ{

1=1



Minimizing the Average Huber Loss

5 (y—0) y -0l <a
a(ly—0]— %) otherwise

Lo (0,y) {

» Take the derivative of the average Huber Loss

QLD(H)EEW:{(%H) 1y, — 0] < «

00 n < | —asign(y; — 0) otherwise



QLD(Q)lzn:{—(yz—e) ‘yi—9‘<&

00 n < | —asign(y; — ) otherwise

» Set derivative equal to zero:

Za— Za— Z(yi—e) =0

0>y;+ 0<y;—« lyi —0]| <

> Solution@

» No simple analyfic solution ...
» We can still plot the derivative



Visualizing the

(y—6)°

La(0,y) = {z (ly— 0] — 2)

Derivative of the Huber Loss

Alpha =10

50
= Huber Loss
‘y _ 9’ < o 40 e derivative
. 30 — (bservation
otherwise
20
10
0 /
. | |
-20
0 10 20 30 40 50

Percent Tip (6)

» Large a = unigue optimum
like squared |oss



Loss

Visualizing the Derivative of the Huber Loss

15

10

5

0

Alpha =1 50 Alpha =10
Huber Loss - Huber Loss
derivative 40 derivative
-—  (Qbservations -  (Observation
30
Many optimal values 20
10
0 /
o |
| | | |
-20
0 10 20 30 40 50 0 10 20 30 40 50
Percent Tio (6) Percent Tip (6)
» Derivative is continuous » Large a = unigue optimum

» Small a @?Pmany optimao like squared |oss



Numerical Optimization



Minimizing the
Huber Loss
Numerically

Often we will use
numerical optimization
methods

The following are helpful
properties when using
numerical optimization
methods:

» convex loss function
» smooth |loss function

» analytic derivative

from scipy.optimize import minimize

def huber loss derivative(est, y obs, alpha=1):
d = abs loss(est, y obs)
return np.where(d < alpha,
~(y _obs - est),
-alpha * np.sign(y obs-est))

f = lambda theta: data[ 'pcttip’'].apply(
lambda y: huber loss(theta, y)).mean()
df = lambda theta: data[ 'pcttip’'].apply(
lambda y: huber loss derivative(theta, y)).mean()

oy minimize(f, x0=0.0, jac=df)

fun: 3.4999248461189802
hess inv: array([[ 5.08333333]])
jac: array([ 4.3680905%9e-17])
message: 'Optimization terminated successfully.'

nfev: 10
nit: 7
njev: 10

status: 0
success: True
X: array([ 15.53063381])



Summary of Model Estimation

1. Define the Model: simplified representation of the world
» Use domain knowledge but ... keep it simple!
» Intfroduce parameters for the unknown quantities

2. Define the Loss Function: measures how well a particular instance
of the model “fits” the data
> Weintroduced L2, L', and Huber losses for each record
» Take the average loss over the entire dataset

3. Minimize the Loss Function: find the parameter values that
minimize the loss on the data
>  We did this graphically
» Minimize the loss analytically using calculus
» Minimize the loss numerically



Improving the Model



Going beyond the simple model
percentage tip = 6~

» How could we improve upon this model?

» Things to consider when improving the model

> Related factors to the quantity of intferest
» Examples: quality of service, table size, time of day, total bill
» Do we have data for these factors?

» The form of the relationship to the quantity of interest
» Linear relationships, step functions, etc ...

» Goals for improving the model
> Improve prediction accuracy > more complex models
» Provide understanding - simpler models

> Is my model “identifiable” (is it possible to estimate the parameterse)
» percent tip = 6;* + 6, € many identical parameterizations



percentage tip = 07 + 65 « total bill

Rationale: 70 o

Larger bills result in larger Often visualizaftion can guide in
tips and people tend to 60 the model design process.

to be more careful 50

or stingy on big tips.

Percent Tip

Parameter Interpretation:

» 0,: Base tip percentage

» O, Reduction/increase
In fip for an increase in
total bill.

10 20 30 40 50
total_bill



Estimating the model parameters:
percentage tip = 07 + 65 x total bill

> Write the loss (e.g., average squared |oss)

Lo(0r,02) = ~ 5" (g — (01 + 01,))’

n “—
x; (Total Bill)  y; (% Tip) 1=1
i 16.99  5.944673 Total Bil
10.34 16.054159

0
1
N — 2 21.01 16.658734
3
4

23.68 13.978041

24.59 14.680765




Lp(01,02) = — Z (yi — (01 + 6’2%))2

> Take the derivative(s):

o, 1
~——Lp(01,02) = — Z

(9(91 T



Lp(01,02) = — Z (yi — (01 + 6’2%))2

> Take the derivative(s):

0 ) —
—Lp(01,02) = —— (y; — (01 + O2x;))
8(91 T 1
0 2 0
L0, 05 — _° L AN |
90, p(01,02) n 2 (y; — (01 + O22;)) 90, Oox;
2 mn
=== (i — (6 + 620)



L(6y,0,) = — > (i = (0 + 02,))°

> Take the derivative(s):

5, 2 —

— L «9 6’ = —— -
901 D 1, 2 n - 92%))
0 2 «

S = —— 6’ 0o,
90, Lp(61,62) - 1+ 02;)) x;

» Set derivatives equal to zero and solve for parameters



Solving for B,

0=-- D (Wi — (01 + 0ay))

n -
1=1

() s

M Zyz = nb ‘|‘(92in
i=1 i=1



Solving for B,

Zyi = nb +922l‘z‘ = %Zyz = 0, ‘|‘6’2%in
i=1 i=1 i=1 i=1

» Define the average of x and y: @
Ry j =01 + 0o
_ — X
T .= - Z X; j\> Y 1 2
1=1

Nag
|

%Zyz (91 :g—ezf



Scratch 91 — g — 92

Solving for 6,

0 2

—— = —— i — (01 + 0225)) x;
86’2LD(91’92) - (y; — (01 + O2x;)) x




Scratch 91 — g o 92'/’1_7

Solving for 8,

0 =-- ((Z”) ) (923}) ezx)

&> D Yiwi =01 ) wit 0 ) a7
i=1 =1 =
El En:yzx@ — 4, Xn:% oo zn:ﬁ
e st =



Scratch

Nag

S|

Solving for 6,
1 — 1 — 1 —
— iT; = 01— i T 02— ;

1
”: &> Ty = 01T + Oy

TY = i;xzyz

mn
— 1
r? = — g T
n -
1=1

€T =




SYSTem of . > Substituting 8, and solving for 6,
Linear Equations

Ty = (§ — 027) T + 0922
0, — i — Oo

TY = 017 + 0522




» Completing the squares:

Denominator
Derivation

Skipped In Class



» Completing the squares:

Z (yixi — yx) = Z (i + YT — 4T — Yzi) + YT + Yo, — 2yT)
1=1 1=1
Numerator — =>_ (v —9) (: = 2) + v + givi — 257)
Derivation o

Skipped in Class =Y (yi—0) (@i — )+ ) (5% + Y — 2y%)
1=1

1=1

= (yi —9) (xi — T) + nYT + YnT — 2nya
1=1

:Z(yi—g)(wz’—f)



Summary so far ...

> Step 1: Define the model with unknown parameters

percentage tip = 07 + 65 x total bill

> Step 2: Write the loss (we selected an average squared |oss)
1 « ,
Lp(01,02) = — Z (yi — (01 + O22;))

n -
1=1

> Step3: Minimize the loss

» Analyfically (using calculus)
» Numerically (using optimization algorithms)



n

1 2
Lp(61,05) = — i — (01 + Osx;
p(01,02) n;(y (01 + O2z;))
> Step3: Minimize the loss

» Analytically (using calculus)
» Numerically (using optimization algorithms)

0

8—91[/]}(91, (92 = — — Z 91 —+ 9233@))
0

—LD(Ql, (92 — T Z 91 =+ (92377,))

005



» Set derivatives equal to zero and solve for parameter values

0, = i — Oo7

g, W= _ y2ic (¥ = 7) (Wi —7)

x? — Z° LS (i —7)°

> |Is this a local minimume®e

0” 2
892[41} 91,(92 — ——Z 891 61 —|—92£IJZ)) - —— —1 =

0” 2 < O 2 v~ 5
o9z Lo (01, 02) = ~= > g Wi (014 i) = = a >0
=1



Visualizing the Higher Dimensional Loss

> What does the loss look like?
» GO to notebook ...

thetal

4.5 : 2.5 2 thetaO



“Improving” the Model
(Mmore...)



percentage tip = 6] + 65 xis Male
+ 05 « is Smoker + 0, x table size

Rational:
Each term encodes a potential factor that could

affect the percentage ftip.

Possible Parameter Interpretation: Difficult
> O,: base fip percentage paid by female non- to
smokers without accounting for table size. Plot

» 0, fip change associated with male patrons ...
Go to Notebook

Maybe difficult to estimate ... what if all smokers
are male?



Define the model

» Use python to define the function

def f(theta, data):

return (
theta[0]
theta[l]
theta[2]
theta[3]

-
*
*
*

(data[ 'sex'] == 'Male') +
(data[ 'smoker'] == "Yes") +
data[ 'size’']



Define and Minimize the Loss

def 12(theta):
return np.mean(squared loss(f(theta, data), data[ 'pcttip']).values)

minimize(l2, x0=np.zeros(4))

fun: 36.25888793122608
hess inv: array([[ 5.00852276, -1.03468734, -1.13297213, -1.36869473],
[-1.03468734, 2.06166674, 0.00679159, -0.11857307],
[-1.13297213, 0.00679159, 2.08462848, 0.14029876],
[-1.36869473, -0.11857307, 0.14029876, 0.55080528]1])
jac: array([ 3.81469727e-06, 3.33786011e-06, 4.76837158e-07,
8.10623169e-061])
message: 'Optimization terminated successfully.'

nfev: 84
nit: 13
njev: 14

status: 0
‘success: True
‘x: array([ 18.73866929, -0.73513124, 0.16122391, -0.87437012])



Define and Minimize the Loss

def l1ll(theta):
return np.mean(abs loss(f(theta, data), data[ 'pcttip']).values)

minimize(ll, np.zeros(4))

fun: 3.90957158852356
hess inv: array([[ 443.57329609, -215.55179077, -211.52560242, -109.7383045 1,
[-215.55179077, 104.77953797, 102.80962477, 53.31466531],
[-211.52560242, 102.80962477, 100.96345597, 52.31890909],
[-109.7383045 , 53.31466531, 52.31890909, 27.1545730511)
jac: array([ 0.00750431, 0.00340596, 0.00340596, 0.01979941])
message: 'Desired error not necessarily achieved due to precision loss.'

nfev: 1104
nit: 31
njev: 182

status: 2
W»success: False
#) x: array([ 18.02471408, -0.72038142, -0.9579457 , -0.77126898])



Define and Minimize the Loss

def huber(theta):
return np.mean(huber loss(f(theta, data), data[ 'pcttip']))

minimize (huber, np.zeros(4))

fun: 3.4476306812527757
hess inv: array([[ 77.24012512, -19.71060902, -26.073196 , -20.40690306],
[-19.71060902, 20.85365616, 4.851162091, 2.01663757],
[-26.073196 , 4.85116291, 28.8990574 , 5.65213441],
[-20.40690306, 2.01663757, 5.65213441, 6.76874477]11])
jac: array([ -1.19209290e-07, -8.94069672e-08, -1.19209290e-07,
-1.78813934e-07])
message: 'Optimization terminated successfully.'
nfev: 150
nit: 21
njev: 25
status: 0
- success: True
‘x: array([ 18.53021329, -0.90174037, -0.87843472, -0.84144212])



