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, | | Machine
Modeling and Estimation (Learning)

Training Data 1.Define the model
g — f@(il?) — (90 —+ 6)1513
SN0
T — 2.Choose a loss
\-—/ 1 n
v 2
L L(6) = - Z (yi — fo(xi))
s =1
T X 3. Minimize the loss

0 = arg m@in L(8)



Prediction (Testing)

Sometimes also called inference and scoring

1. Receive a new guery point

CE ..Yy g'. l.:.
2. Make prediction using ; ¢ . foey=Jfi(x)
learned model 20 N I\ ()
A 10 . oo % o 9
J = fy(x) wa .
0 '.O a - ‘
3. Test Error (using squared loss) .~ = | L 5 o

(y — f3(2)" = (y — )



Training
Objective

n

1

arg min — > (i — folx)’

0

1=1

» Minimize error on fraining data
» sample of data from the world
» estimate of the expected error

» We can compute this directly

ldealized
Objective

arg min B [(y — fe(:v))ﬂ

» Minimize our expected
prediction error over all
possible test points

> ldeal Goadl
» Can't be computed ... ®

» But we can analyze it!



Analysis of Squared Error Quantifies in red are

random variables
Training on a random sample of data from the population.
. 1 —
(X0, Vi) ~Pla,y) wp 0 =argmin—» (Y~ fo(X:)’

1=1
Tesﬁng at a given query point X and computing expected squared error

E|(V - f;(2)

Expectation is taken over Expectation is taken over
all possible Y observations. all possible fraining datasets




In the last lecture we showed that

o

E _(Y — fé(aj)) _ —
Obs. Var. + (Bias)?+ Mod. Varr.

Other terminology:

“Noise” + (Bias)?+ Variance




B 2 . Assuming 0 mean o bserva tion
nd frue function h(x)
(Y_fé(x)) — Y =h(x) +¢
E (Y — h(z))*] + %g;”\/anance

2

(h(x) ~E[f,@)])’+  (Bias)?

E [(E[ ()] — fé(:c))ﬂ Model Variance



Assuming 0 mean observation
noise and frue function h(x)

Alternative proof Y = h(z) + e

Courtesy of Allen Shen

E|(Y - f;(2)] =B [Y?=2£;()Y + ()|

Linearity of Expectation — E [Yz} — E [Qfé (CIZ)Y} —|— E [fg (CIZ’)}

Definifion of Y = & [(h(x) - 6)2] — E [Qfé(a:)Y] + E [fQ(a’;)}

P, OO Defn of e

Bonus study materiall



EUY—@@WﬂzEﬁﬂ—yw@Y+ﬁ@ﬂ

Linearity of Expectation — H; :Yz} — E [Qfé (CIZ)Y} + E [fg (CIZ‘)}

Definiion of Y = [(h(x) — 6)2] — E [Zfé(a:)Y] + E {fg(a’;)}

E [(h(z) — €)?] = h*(z) — 2h(x)E [¢] + E |¢”]

O OO Defn’ of e

:h@f+a%4Ep@@nj+EL§@ﬂ

Bonus study materiall



E[(Y - f;@)’] =E :Yz = 2f5(@)Y + f2(2)]
= h(2)? + 0% ~ B[2f(2)Y] + B[ 12(x)

oSS = h(2)? + 0% — 2B [£,(2)] B[Y] + E [ 13(2)]

Definition of Y
= h(2)*> + 02— 2E [f,(z)] E[h(z) + €] + E [ fg(x)}
Linearity of expectation

= h(z)* + 02 — 2B [f,(z)] h(z) + E [ fg(az)}

Assuming 0 mean observation
noise and frue function h(x)

Y =h(x)+e

Bonus study materiall



E[(Y - £;(2)"] =B[Y* 2@V + fj@)

= h(z)* +0° = 2E [f;(x)] h(z) + E [fez(x)}

Definition of Variance

Var |f;| = E {fﬁ(w)} -k [fé(m)f

= h(2)? + 0% = 2 [f;(2)] h(z) + E [f;(2)]* + Var [f;(z)]

Rearranging terms

= 0” + h(x)” — 2E [f;(2)] h(x) + E [f;(x)]" + Var [f;(x)]

= 0” + (h(x) — E [f;(2)])" + Var [f;(z)]

Bonus study materiall



Summary

(Xi,Yi) ~Play) wh 6 = argmin " (Vi — fy(X)))’

1=1

Expectation is taken over
all possible Y observations.

E (Y~ f;(2)"| =0+ (h(2) ~ E[f;(2)])* + Var [f;(2)
Obs. Var. + (Bias)?2 + Mod. Var.

Expectation is taken over

all possible training datasets



Bias = h(z) — E | f;(z)]

The expected deviation between the predicted value
and the frue value

» Depends on both the: All possible functions

» choice of f e 6 v
> learning procedure OSS\b Q/U@&

> Under-fitting

20

Bias
True
Function

10

-10 -5 0 5 10




Observation Varionce = E [(Y — h(x))Q] =0°

the variability of the random noise in the process we are
trying to model

> measurement variability ®

30 o/ 9
]

» stochasticity

20

» missing informaftion J TN S

10

0

Beyond our contirol .
(USUG"Y) -10 -5 0 5 10



Estimated Model Variance =
Var | fy(z)] = E [(fy(z) — E [f3(z)])]

variability in the predicted value across different training
datasefs

20

> Sensifivity to variation in |
the training dato 10 _ )

» Poor generalization .

> Overfitting 10

-20

-10 -5 0



The Bias-Variance Tradeoft

Estimated Model Variance

We want to decrease both bias and variance but often
decreasing one results in an increase in the other.

4EmnTE—



Bias Variance Plot

£ 3
/(- S
= Y
g Q)
2
O

Increasing Model Complexity =



More Data supports More Complexity

Increasing Model Complexity =




Model Complexity

» Roughly: capacity of the model fo fit the data

» Many different measures and factors
» Covered in machine learning class

> Dominant factors in linear models
» Number and types of features

T resueeg m
Return fo this



Regression and
Linear Models



Regression

> Estimating relationship between X and Y
> Y Is a quantitative value
» We will soon see X can be almost anything ...

X

Jo = e
Model — 0 O



Least Squares Linear Regression

One of the most widely used tools in machine learning and data science

Model Linear in the Parameters

d
= folx) =) 0;0;(x)
j=1

Feature Functions

Loss Minimization

Squared Loss

2
n

d

) 1

0 = arg min - Z Yi — Zej%‘(%’)
i=1 j=1

We will return to
solving this soon!



Linear Models and Feature Functions

Linear in the Parameters

d
g = fo(x) = Zeﬂbg‘(ﬂf)

Feature Functions

Designing the feature functions is a big part of machine
learning and data science.

Feature Functions
» capture domain knowledge
» substantial contribute to expressivity (and complexity)



Linear Models and Feature Functions

Linear in the Parameters

d
g = fo(x) = Zeﬂbg‘(ﬂ?)

Feature Functions

For Example: Domain: X c R Model: f@ ($) = (91517 —+ 6)2

¢1(r) =2 °
P2(z) =1

Adding a “constant” feature
function bo (a?) —1

IS d common method to
infroduce an offset (also
sometimes called bias) term.

-10 -5 0 5 10



Linear Models and Feature Functions

Linear in the Parameters

d
g = fo(x) = Zeﬂj(m)

Feature Functions

For Example: = € R fo(x) = 012 + 05 sin(x) + 03 sin(5x)

Features: o0, = 1.0
¢1(z) = s 6, =2.0

P2 (5’3) — Sin(x) > o A5 = 1.0

& This is a linear model!

Linear in the parameters




Linear Models and Feature Functions

Linear in the Parameters

d
0= fo(z) = Y 0,0;(c) — RIS
j=1

For Example: 2 € R?

f@(ﬂi‘) — O1x129 + 05 COS(CIZ‘QZCl) -+ (931[ [5131 > 23‘2]

Features:
< This is a linear model!
¢1 (.CL‘) — 1t 20 “ )ﬂ Linear in the parameters
¢2(x) = cos(xomxy) 10 -

-20

¢3(z) = I > ] = | B /3




Linear Models and Feature Functions

Linear in the Parameters

E 6’3 ¢] Feature Functions

What if X is a record with numbers, text, booleqns etfc..

mmm m

True "Meh."
42 50 : ed out of 4.5
Answer: | | ox "
57 16 Feature engineering Sl



How do we define Qbe

Feature Engineering

Keeping it Real



Feature Engineering

» The process of transforming the inputs to a model to
Improve prediction accuracy.

» A key focus in many applications of data science

» Feature Engineering enables you to:

>

>
>

capture domain knowledge (e.g., periodicity or relationships
between features)

encode non-numeric features to be used as inputs to models
express non-linear relationships using linear models



Predict rating from review information

us age _site_nassougn_revew__Jraing.

True "Meh.”
42 50 WA True "Worked out of 4.5
the box ..."
57 16 CA NULL “Hella tots lit yo ..." 4.1

Schema:

RatingsData(uid INTEGER, age FLOAT,
state STRING, hasBought BOOLEAN,
review STRING, rating FLOAT)



RatingsData(uid INTEGER, age FLOAT,
state STRING, hasBought BOOLEAN,

AS d Linear MOdela review STRING, rating FLOAT)

o Do

True "Meh."” 2.0
X= 42 50 WA True "Worked out of Y= 4.5
the box ..."”
57 16 CA NULL “Hella tots lit yo 47
Can |l use X and Y directly 0 o
INn a linear model
» No! Why¢

» Text, Categorical dataq,
Missing values...




Basic Transformations

> Uninformative features: (e.g., UID)
> s this informative (probably not?)

» Transformation: remove uninformative features (why?¢)
» Could increase model variance ...

» Quantitative Features (e.g., Age)
> Transformation: May apply non-linear transformations (e.g., loQ)

» Transformation: Normalize/standardize (more on this later ...)
» Example: (x — mean)/stdev

» Categorical Features (e.g., State)

» How do we convert Stafte info meaningful numberse
» Alabama =1, ..., Utah =50 ¢
» Implies order/magnitude means something ... we don’'t want that ...

> Transformation: One-hot-Encode



One Hot Encoding (dummy encoding)

> Transform categorical feature into many binary features:
state AK | .. [CA| .. [NY .. WA| .. |WY
NY ol | @ | . I
WA » o o ]3| .. 0
CA 0 .. Lo o] ® ] ] e

Origin of the term: multiple “wires” for

¢1 (CIZ‘) =3 .CE‘ 1S ’AK’: possible values one is hot ... »
Corresponding ¢2 (ZE) — ]I -ZC iS ;AL;' o @— Cat
feat I ] Ot
s pa— P
]
S tebook .
fc?r:er;gmeplzo ¢50 (5[;) — I [Qj 1S ’WY’] = GB Fish
code.




Encoding Missing Values

» Missing values in Quantitative Data

> Try to impute (estimate) missing values... (tfricky)
» Substitute the sample mean

> Try more sophisticated algorithms to predict the missing value ...

» Add a binary field called “missing_col_name”. (why?¢)
» Sometimes missing data is signall

» Missing values in Categorical Data
» Add an addition category called “missing_col_name”

» Some Boolean values can be converted info
» True => +1, False => -1, Missing => 0



Encoding categorical dato

» Categorical Dafa = One-hot encoding:
state [N AL | .. [CA| .. [NY| .. [WA| .. WY
NY o .. o ..JH@ .. o .. 0O

il
WA » o 8] ] 0| . . 0
CA 0 .. cle] e e

» Text Data
> Bag-of-words & N-gram models

“Learning about

machine
learning is fun.”

o aardvark
o aardwolf
v learning

— fun

Vector

— machine

o zyzzyvad



Bag-of-words Encoding

» Generalization of one-hot-encoding for a string of text:

“Learning about

»

Vector

machine
learning is fun.”

aardvark
aardwolf
— machine

— fun
v learning

o
o

» Encode text as along vector of word counts (Issues?)
» Long = millions of columns >typically high dimensional and very sparse
» Word order information is lost... (is this an issue?¢)
» New unseen words at prediction (test) time - drop them ...

> A bagis another term for a multiset. an unordered collection which may
contain multiple instances of each element.

» Stop words: words that do not contain significant information
» Examples: the, in, at, or, on, a, an, and ...
> Typically removed

o zyzzyvad



| made this art piece
iIn graduate school

Do you see the stop
word?

There used 1o be a
dustbin and broom
... but the janitors
got confused ...




N-Gram Encoding

> Sometimes word order matters:

The book was not well » The book was well written
written but I did enjoy it. but I did not enjoy it.

» How do we capture word order in a “vector” modele¢
» N-Gram: “Bag-of- sequences-of-words”



Removed
stop words

ook
\ |

well written

2

book well -

}

well written -

written not -

Nnot enjoy

Not enjoy -

2-Gram Encoding

Vector

aardvark airlines

0

C
o)
Q
o
Q
Q
O
0

book well

—

not enjoy

—

well written

.
—

written not

—

O zyzzyva sf



N-Gram Encoding

> Sometimes word order matters:

The book was not well The book was well written
written but I did enjoy it. but I did not enjoy it.

» How do we capture word order in a “vector” modele
» N-Gram: “Bag-of- sequences-of-words”

> Issues:
» Can be very sparse (many combinations occur only once)
» Many combinations will only occur at prediction time - drop ..

» Offten use hashing approximation:
> Increment counter at hash(“not enjoy”) collisions are okay



Feature Transformations to Capture

Domain Knowledge

» Feature functions capture domain knowledge by
infroducing additional information from other sources

and/or combining features

Could do a database lookup

¢7L (37) — iSWinter(mdatea xlocation)

» Encoding non-linear patterns

1.0

0.5

-0.5

-1.0

Diurnal patterns.

0 5 10 15 20
Hour of day (24hr)

25



The Feature Matrix P

X DataFrame b c RnXd
hasB ht 1
vid |age |state |hasBought [review | A [T age. | nossovgn resough
0 32 NY True "Meh." missing
42 50 WA True "Worked out of —) 0 o ] o 0 32 ] 0
the box ...” ¢ o ... 0 .. o0 50 1 0
57 16 CA NULL “Hella tofs it...” O .. O .. 0 16 0 1

Entfirely Quantitative Values



——————
The Feature Matrix @ ¢ N

o .. 0 .. O 16 0 1

Enfirely Quantitative Values

{ (1)
"l — 9 (x ) — Rows of the & matrix

b c Rnxd _ qb [X] _ g (x(z)) L correspond to records.

DataFrame . Columns of the & matrix
correspond fo features.




Making Predictions

(1)
: ¢ (ZC ) - Rows of the & matrix

d c R4 = ¢ [X] _ s (:1:(2>) | cormespond torecoras.

DatafFrame - Columns of the ® matrix
correspond fo features.

Prediction d
_(b(x(l)) e
Y =f;(X) =00 = [——e() o= |a®



Summary of Notation

Feature
Engineering

Linear
Regression



Optimizing the Loss (Bonus Material)

L(@) : Z (yz 29]¢j L ) Y Y) (Y }A/)

1=1 m _
> D DS Y —
1 |S lg L Y2 — U2
— — (Y — ®0)" (Y — 0) —
n Yn — Un

= % (Y'Y —2Y" @0 + 6" o' ©0)

Taking the Gradient of the loss



Optimizing the Loss (Bonus Material)

Deriving the Normal Equation

1
L(O) == (Y'Y —2Y"®0 + 0" &' 30)

T
Rule/l Rule/2 Useful Matrix Derivative Rules:
Taking the Gradient of the loss
2 2 11 Vg (AB) = At
Setting the gradient equal to 0 and solving for ©:
2 &7 2 =T ) T L &l
O0=—P 'Y 4+ —D" Of e 9:(<I> <I>) oY
T T

“Normal Equation”



The Normal Equation 6 = (#7®) &7y

R " TN TN
9 d= (I)T (I) d q)T )%
N YN y

Note: For inverse to exist ® needs to be full column rank.
- cannot have co-linear features

This can be addressed by adding regularization ...

In practice we will use regression software
(e.g., scikit-learn) to estimate ©




Geometric Derivation {Benus-Material)

We have decided to make this

> Examine the column spaces: derivation not bonus material and

therefore you should know it!
Columns space of &

(T |
Y2
b= |o® @ . o c R7*d Y = c R"™
o "
d ]

> Linear model =2 Y is a linear combination of columns &



Columns space of &

n ‘ ‘ ‘

d = |2V, @ .. o c Rxd

a

Y1

Yn

]

c R"

> Linear model =2 Y is a linear combination of columns &

YA~Y =30 ®

U1
Y2

.....

s



.....

).<
U
~
|
A
g
¥
——
S
2
S
.
S —
D>

Definition of orthogonal

0= (Y — &)

(Y.— ®0)

Normal to subspace

Spanned by & O — (I)TY — (I)T(I)(Q

STDO = BTY oo
P2 H = ((I)T(I))_l (I)TY

“Normal Equation”



Lecture ended here

Note you do need to know the final geometric derivation even
though | said in lecture that you do not.



