Linear Models & Feature Engineering

Slides by:

Joseph E. Gonzalez jegonzal@cs.berkeley.edu

Recap

Machine Modeling and Estimation (Learning)

Training Data

1. Define the model

$$\hat{y} = f_{\theta}(x) = \theta_0 + \theta_1 x$$

2. Choose a loss

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$

$$\hat{\theta} = \arg\min_{\theta} L(\theta)$$

Prediction (Testing)

Sometimes also called inference and scoring

1. Receive a **new** query point

 \mathcal{X}

2. Make prediction using learned model

$$\hat{y} = f_{\hat{\theta}}(x)$$

3. Test Error (using squared loss)

$$(y - f_{\hat{\theta}}(x))^2 = (y - \hat{y})^2$$

Training Objective

$$\arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$

- > Minimize error on training data
 - > sample of data from the world
 - estimate of the expected error
- > We can compute this directly

Idealized Objective

$$\arg\min_{\theta} \mathbf{E} \left[\left(y - f_{\theta}(x) \right)^{2} \right]$$

- Minimize our expected prediction error over all possible test points
- > Ideal Goal
 - ➤ Can't be computed ... 🕾
- > But we can analyze it!

Analysis of Squared Error

Quantities in **red** are random variables

Training on a random sample of data from the population.

$$(\boldsymbol{X}_i, \boldsymbol{Y}_i) \sim \mathbf{P}(x, y) \quad \Longrightarrow \quad \hat{\boldsymbol{\theta}} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{Y}_i - f_{\theta}(\boldsymbol{X}_i))^2$$

Testing at a given query point x and computing expected squared error

$$\mathbf{E}\left[\left(Y - f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right]$$

Expectation is taken over all possible Y observations.

Expectation is taken over all possible training datasets

In the last lecture we showed that

$$\mathbf{E}\left[\left(\mathbf{Y} - f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] =$$

Obs. Var. + $(Bias)^2$ + Mod. Var.

Other terminology:

"Noise" +
$$(Bias)^2$$
 + Variance

$$\mathbf{E}\left[\left(\mathbf{Y} - f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] =$$

Assuming 0 mean observation noise and true function h(x)

$$Y = h(x) + \epsilon$$

$$\mathbf{E}\left[\left(\mathbf{Y}-h(x)\right)^2\right]+$$

Obs. Variance "Noise"

$$(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right])^2 +$$
 (Bias)²

$$\mathbf{E}\left|\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right|$$
 Model Variance

Alternative proof Courtesy of Allen Shen

Assuming 0 mean observation noise and true function h(x)

$$Y = h(x) + \epsilon$$

$$\mathbf{E}\left[\left(\mathbf{Y} - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \mathbf{E}\left[\mathbf{Y}^{2} - 2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y} + f_{\hat{\boldsymbol{\theta}}}^{2}(x)\right]$$

Linearity of Expectation
$$=\mathbf{E}\left[\mathbf{Y}^2\right]-\mathbf{E}\left[2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y}\right]+\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right]$$

Definition of Y
$$= \mathbf{E}\left[(h(x) - \epsilon)^2\right] - \mathbf{E}\left[2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y}\right] + \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right]$$

$$\mathbf{E}\left[(h(x) - \epsilon)^2\right] = h^2(x) - 2h(x)\mathbf{E}\left[\epsilon\right] + \mathbf{E}\left[\epsilon^2\right]$$

$$0 \qquad \text{Defn' of } \epsilon$$

Bonus study material!

$$\mathbf{E}\left[\left(\mathbf{Y} - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \mathbf{E}\left[\mathbf{Y}^{2} - 2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y} + f_{\hat{\boldsymbol{\theta}}}^{2}(x)\right]$$

Linearity of Expectation
$$=\mathbf{E}\left[\mathbf{Y}^2\right]-\mathbf{E}\left[2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y}\right]+\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right]$$

Definition of Y
$$= \mathbf{E}\left[(h(x) - \epsilon)^2\right] - \mathbf{E}\left[2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y}\right] + \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right]$$

$$\mathbf{E}\left[(h(x) - \epsilon)^2\right] = h^2(x) - 2h(x)\mathbf{E}\left[\epsilon\right] + \mathbf{E}\left[\epsilon^2\right]$$

$$0 \qquad \text{Defn' of } \epsilon$$

$$= h(x)^{2} + \sigma^{2} - \mathbf{E}\left[2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y}\right] + \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^{2}(x)\right]$$

$$\begin{split} \mathbf{E}\left[\left(\mathbf{Y}-f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] &= \mathbf{E}\left[\mathbf{Y}^2-2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y}+f_{\hat{\boldsymbol{\theta}}}^2(x)\right] \\ &= h(x)^2+\sigma^2-\mathbf{E}\left[2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y}\right]+\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right] \\ \text{Y is independent of } \theta &= h(x)^2+\sigma^2-2\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\mathbf{E}\left[\mathbf{Y}\right]+\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right] \\ &= h(x)^2+\sigma^2-2\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\mathbf{E}\left[h(x)+\epsilon\right]+\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right] \\ &= h(x)^2+\sigma^2-2\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]h(x)+\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^2(x)\right] \end{split}$$

Assuming 0 mean observation noise and true function h(x)

$$Y = h(x) + \epsilon$$

Bonus study material!

$$\mathbf{E}\left[\left(\mathbf{Y} - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \mathbf{E}\left[\mathbf{Y}^{2} - 2f_{\hat{\boldsymbol{\theta}}}(x)\mathbf{Y} + f_{\hat{\boldsymbol{\theta}}}^{2}(x)\right]$$

$$= h(x)^{2} + \sigma^{2} - 2\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]h(x) + \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^{2}(x)\right]$$

Definition of Variance

$$\mathbf{Var}\left[f_{\hat{\boldsymbol{\theta}}}\right] = \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}^{2}(x)\right] - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]^{2}$$

$$=h(x)^2+\sigma^2-2\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]h(x)+\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]^2+\mathbf{Var}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]$$

Rearranging terms

$$= \sigma^2 + h(x)^2 - 2\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]h(x) + \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]^2 + \mathbf{Var}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]$$

$$= \sigma^2 + \left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^2 + \mathbf{Var}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]$$

Bonus study material!

Summary

$$(\boldsymbol{X}_i, \boldsymbol{Y}_i) \sim \mathbf{P}(x, y) \quad \Longrightarrow \quad \hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^n (\boldsymbol{Y}_i - f_{\boldsymbol{\theta}}(\boldsymbol{X}_i))^2$$

Expectation is taken over all possible Y observations.

$$\mathbf{E}\left[\left(\mathbf{Y} - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \sigma^{2} + \left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^{2} + \mathbf{Var}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]$$

Obs. Var. + $(Bias)^2$ + Mod. Var.

Expectation is taken over all possible training datasets

Bias =
$$h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right]$$

The expected deviation between the predicted value and the true value

Observation Variance = $\mathbf{E}\left[\left(\mathbf{Y} - h(x)\right)^2\right] = \sigma^2$

the variability of the random noise in the process we are trying to model

- measurement variability
- > stochasticity
- > missing information

Beyond our control (usually)

Estimated Model Variance =

$$\mathbf{Var}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] = \mathbf{E}\left[\left(f_{\hat{\boldsymbol{\theta}}}(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)\right]$$

variability in the predicted value across different training datasets

- Sensitivity to variation in the training data
- Poor generalization
- Overfitting

The Bias-Variance Tradeoff

Estimated Model Variance

We want to **decrease both bias and variance** but often decreasing one results in an increase in the other.

Bias Variance Plot

More Data supports More Complexity

Model Complexity

- > Roughly: capacity of the model to fit the data
- > Many different measures and factors
 - Covered in machine learning class
- > Dominant factors in linear models
 - Number and types of features
 - > Regularization

Return to this

Start with this

Regression and Linear Models

Regression

- Estimating relationship between X and Y
 - > Y is a quantitative value
 - > We will soon see X can be almost anything ...

Least Squares Linear Regression

One of the most widely used tools in machine learning and data science

Model

$$\hat{y} = f_{\theta}(x) = \sum_{j=1}^{d} \theta_j \phi_j(x)$$

Feature Functions

Linear in the Parameters

Loss Minimization

$$\hat{\theta} = \arg\min \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} \theta_j \phi_j(x_i) \right)$$

We will return to solving this soon!

Squared Loss

 $\hat{y} = f_{\theta}(x) = \sum_{j=1}^{d} \theta_{j} \phi_{j}(x)$ Feature Functions

Designing the feature functions is a big part of machine learning and data science.

Feature Functions

- > capture domain knowledge
- substantial contribute to expressivity (and complexity)

 $\hat{y} = f_{\theta}(x) = \sum_{j=1}^{d} \theta_{j} \phi_{j}(x)$ Feature Functions

For Example: Domain: $x \in \mathbb{R}$ Model: $f_{ heta}(x) = heta_1 x + heta_2$

Features:

Adding a "constant" feature function $\phi_2(x)=1$

is a common method to introduce an **offset** (also sometimes called **bias**) term.

Linear in the Parameters

$$\hat{y} = f_{\theta}(x) = \sum_{j=1}^{d} \theta_j \phi_j(x)$$

Feature Functions

For Example: $x \in \mathbb{R}$

$$f_{\theta}(x) = \theta_1 x + \theta_2 \sin(x) + \theta_3 \sin(5x)$$

Features:

$$\phi_1(x) = x$$

$$\phi_2(x) = \sin(x)$$

$$\phi_3(x) = \sin(5x)$$

10
$$\theta_1 = 1.0$$
5 $\theta_2 = 2.0$
-10 $\theta_3 = 1.0$
-10 -5 0 5 10

← This is a linear model!

Linear in the parameters

10

$$\hat{y} = f_{ heta}(x) = \sum_{j=1}^d heta_j \phi_j(x)$$
 Feature Functions

For Example: $x \in \mathbb{R}^2$

$$f_{\theta}(x) = \theta_1 x_1 x_2 + \theta_2 \cos(x_2 x_1) + \theta_3 \mathbb{I}[x_1 > x_2]$$

Features:

← This is a linear model!

Linear in the parameters

$$\hat{y} = f_{ heta}(x) = \sum_{j=1}^d heta_j \phi_j(x)$$
 Feature Functions

What if X is a record with numbers, text, booleans, etc...

uid hasBought state rating review age "Meh." 2.0 32 NY True 42 ked out of 4.5 50 Answer: OX ..." Feature engineering a tots lit yo ..." 57 16

How do we define ϕ ? Feature Engineering

Feature Engineering

- > The process of transforming the inputs to a model to improve prediction accuracy.
 - > A key focus in many applications of data science

- > Feature Engineering enables you to:
 - capture domain knowledge (e.g., periodicity or relationships between features)
 - > encode non-numeric features to be used as inputs to models
 - > express non-linear relationships using linear models

Predict rating from review information

uid	age	state	hasBought	review	rating
0	32	NY	True	"Meh."	2.0
42	50	WA	True	"Worked out of the box"	4.5
57	16	CA	NULL	"Hella tots lit yo"	4.1

Schema:

```
RatingsData(uid INTEGER, age FLOAT, state STRING, hasBought BOOLEAN, review STRING, rating FLOAT)
```

As a Linear Model?

	uid	age	state	hasBought	review
V_	0	32	NY	True	"Meh."
χ=	42	50	WA	True	"Worked out of the box"
	57	16	CA	NULL	"Hella tots lit yo "

Can I use X and Y directly in a linear model

- ➤ No! Why?
- Text, Categorical data, Missing values...

Basic Transformations

- Uninformative features: (e.g., UID)
 - Is this informative (probably not?)
 - > Transformation: remove uninformative features (why?)
 - > Could increase model variance ...
- Quantitative Features (e.g., Age)
 - > Transformation: May apply non-linear transformations (e.g., log)
 - > Transformation: Normalize/standardize (more on this later ...)
 - Example: (x mean)/stdev
- Categorical Features (e.g., State)
 - How do we convert State into meaningful numbers?
 - ➤ Alabama = 1 , ..., Utah = 50 ?
 - > Implies order/magnitude means something ... we don't want that ...
 - > Transformation: One-hot-Encode

One Hot Encoding (dummy encoding)

> Transform categorical feature into many binary features:

state
NY
WA
CA

AK	•••	CA	•••	NY	•••	WA	•••	WY
0	•••	0	•••	1	•••	0	•••	0
0	•••	0	• • •	0	•••	- 1	• • •	0
0	• • •	1	• • •	0	•••	0	• • •	0

$$\phi_1(x) = \mathbb{I}[x \text{ is 'AK'}]$$

Corresponding feature functions

$$\phi_2(x) = \mathbb{I}[x \text{ is 'AL'}]$$

• • •

See notebook for example code.

$$\phi_{50}(x) = \mathbb{I}\left[x \text{ is 'WY'}\right]$$

Origin of the term: multiple "wires" for possible values one is hot ...

Encoding Missing Values

- > Missing values in Quantitative Data
 - > Try to impute (estimate) missing values... (tricky)
 - > Substitute the sample mean
 - > Try more sophisticated algorithms to predict the missing value ...
 - Add a binary field called "missing_col_name". (why?)
 - > Sometimes missing data is signal!
- Missing values in Categorical Data
 - > Add an addition category called "missing_col_name"
 - Some Boolean values can be converted into
 - > True => +1, False => -1, Missing => 0

Encoding categorical data

➤ Categorical Data → One-hot encoding:

- > Text Data
 - Bag-of-words & N-gram models

Bag-of-words Encoding

Generalization of one-hot-encoding for a string of text:

- Encode text as a long vector of word counts (Issues?)
 - ➤ Long = millions of columns → typically high dimensional and very sparse
 - Word order information is lost... (is this an issue?)
 - \triangleright New unseen words at prediction (test) time \rightarrow drop them ...
- A **bag** is another term for a **multiset**: an unordered collection which may contain multiple instances of each element.
- > **Stop words**: words that do not contain significant information
 - Examples: the, in, at, or, on, a, an, and ...
 - Typically removed

I made this art piece in graduate school

Do you see the stop word?

There used to be a dustbin and broom ... but the janitors got confused ...

N-Gram Encoding

> Sometimes word order matters:

The book was <u>not</u> well written but I did enjoy it.

The book was well written but I did <u>not</u> enjoy it.

- > How do we capture word order in a "vector" model?
 - N-Gram: "Bag-of- sequences-of-words"

N-Gram Encoding

> Sometimes word order matters:

The book was <u>not</u> well written but I did enjoy it.

The book was well written but I did <u>not</u> enjoy it.

- > How do we capture word order in a "vector" model?
 - N-Gram: "Bag-of- sequences-of-words"
- > Issues:
 - Can be very sparse (many combinations occur only once)
 - \triangleright Many combinations will only occur at prediction time \rightarrow drop ...
 - Often use hashing approximation:
 - > Increment counter at hash("not enjoy") collisions are okay

Feature Transformations to Capture Domain Knowledge

Feature functions capture domain knowledge by introducing additional information from other sources and/or combining features
Could do a database lookup

$$\phi_i(x) = \mathbf{isWinter}(x_{\text{date}}, x_{\text{location}})$$

Encoding non-linear patterns

$$\phi_i(x) = \cos\left(\frac{x_{\text{hour}}}{12}\pi + \pi\right)$$

The Feature Matrix Φ

X DataFrame

uid	age	state	hasBought	review
0	32	NY	True	"Meh."
42	50	WA	True	"Worked out of the box"
57	16	CA	NULL	"Hella tots lit"

Φ	\subset	$\mathbb{R}^{n \times d}$
	_	$\pi \sigma$

AK		NY	 WY	age	hasBought	hasBought missing
0	•••	1	 0	32	1	0
0	•••	0	 0	50	1	0
0	•••	0	 0	16	0	1

Entirely **Quantitative** Values

The Feature Matrix Φ

AK		NY		WY	age	hasBought	hasBought missing
0	•••	1	•••	0	32	1	0
0	•••	0		0	50	1	0
0	•••	0	•••	0	16	0	1

Entirely **Quantitative** Values

$$\Phi \in \mathbb{R}^{n \times d} = \phi \left(X \right) = \begin{bmatrix} & \phi \left(x^{(1)} \right) & & \\ & & \phi \left(x^{(2)} \right) & & \\ & & \ddots & \\ & & & \phi \left(x^{(n)} \right) & & \end{bmatrix}$$

Rows of the Φ matrix correspond to records.

Columns of the Φ matrix correspond to features.

Making Predictions

$$\Phi \in \mathbb{R}^{n \times d} = \phi (X) = \text{DataFrame}$$

Rows of the Φ matrix correspond to records.

Columns of the Φ matrix correspond to features.

Prediction

$$\hat{Y} = f_{\hat{\theta}}(X) = \Phi \hat{\theta} \quad = \quad$$

Summary of Notation

Optimizing the Loss (Bonus Material)

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} \theta_j \phi_j(x_i) \right)^2 = (Y - \hat{Y})^T (Y - \hat{Y})$$

$$= \frac{1}{n} (Y - \Phi \theta)^T (Y - \Phi \theta)$$

$$= \frac{1}{n} (Y^T Y - 2Y^T \Phi \theta + \theta^T \Phi^T \Phi \theta)$$

Taking the Gradient of the loss

Optimizing the Loss (Bonus Material)

Deriving the Normal Equation

$$L(\theta) = \frac{1}{n} \left(Y^T Y - 2 Y^T \Phi \theta + \theta^T \Phi^T \Phi \theta \right)$$
Rule 1 Rule 2 Us

Taking the Gradient of the loss

g the Gradient of the loss
$$\nabla_{\theta}L(\theta)=-\frac{2}{n}\Phi^TY+\frac{2}{n}\Phi^T\Phi\theta$$
 and the gradient equal to 0 and solving for θ :

Setting the gradient equal to 0 and solving for θ :

Useful Matrix Derivative Rules:

$$0 = -\frac{2}{n}\Phi^T Y + \frac{2}{n}\Phi^T \Phi \theta \longrightarrow \hat{\theta} = (\Phi^T \Phi)^{-1}\Phi^T Y$$

$$\hat{\theta} = \left(\Phi^T \Phi\right)^{-1} \Phi^T Y$$

"Normal Equation"

The Normal Equation $\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T Y$

$$\hat{\theta} = \left(\Phi^T \Phi\right)^{-1} \Phi^T Y$$

$$\hat{\theta} \quad | \mathbf{d} = \begin{pmatrix} \mathbf{p} & \mathbf{d} & \mathbf{p} \\ \mathbf{\Phi}^T & \mathbf{p} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{d} & \mathbf{p}^T \\ \mathbf{\Phi}^T & \mathbf{p} \end{pmatrix}$$

Note: For inverse to exist Φ needs to be full column rank.

→ cannot have co-linear features

This can be addressed by adding regularization ...

In practice we will use regression software (e.g., scikit-learn) to estimate θ

Geometric Derivation (Bonus Material)

> Examine the column spaces:

We have decided to make this derivation not bonus material and therefore you should know it!

Columns space of Φ

$$\Phi = \begin{bmatrix} y_1 \\ y_2 \\ y_n \end{bmatrix} \in \mathbb{R}^{n \times d} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

 \triangleright Linear model \rightarrow Y is a linear combination of columns Φ

Columns space of Φ

 \triangleright Linear model \rightarrow Y is a linear combination of columns Φ

$$Ypprox \hat{Y}=\Phi\hat{ heta} \hspace{0.2cm}igwedge \hspace{0.2cm}igwedg$$

 \triangleright \hat{Y} is in the subspace spanned by the columns of Φ

Lecture ended here

Note you do need to know the final geometric derivation even though I said in lecture that you do not.