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Feature Engineering and Linear Regression

Feature Linear
Engineering Regression



Recap: Feature Engineering

Notation: Computer scientist / ML
researchers fend to you d

» Linear models with feature func’nons (dimensions) and statisticians wil

use p (parameters).
E : 6)3 ng

> Feature Functions: ¢ : X — Rd o




» One-hot encoding: Categorical Data
state [N AL | .. [CA| .. [NY | .. [WA| .. WY
NY o .. o .. .. 0 .. 0O

L
WA » o @] ] 0 . . 0
CA 0 .. 0 .. 0 .. 0

> Bag-of-words & N-gram: Text Data

“Learning about machine

learning is fun.”

o aardvark
o aardwolf
— fun

v learning
— machine
o Zyzzyva

Vector

» Custom Features: Domain Knowledge
amount

lat, 1 t) =
@llat, lon, amount) = o Codellat, lon]]




The Feature Matrix P

X DataFrame b c RnXd
hasB ht 1
vid |age |state |hasBought [review | A [T age. | nossovgn resough
0 32 NY True "Meh." missing
42 50 WA True "Worked out of —) 0 o ] o 0 32 ] 0
the box ...” ¢ o ... 0 .. o0 50 1 0
57 16 CA NULL “Hella tofs it...” O .. O .. 0 16 0 1

Entfirely Quantitative Values



X DataFrame d c Rn™xd

hasB ht i
N O ] A N WEager hossoug | et
0 32 NY True "Meh." missing
o .. 1 ... O 32 ] 0

42 50 WA True "Worked out of —
the box ..." ¢ o .. 0 .. 0 50 ] 0
57 16 CA NULL “Hella tots lit..." 0 0 0 16 0 ]

Entfirely Quantitative Values
Another quick note on confusing notation.
In many textbooks and even in the class notes and discussion you will see:
A T\ 1 T
XeR™ aa 0=(X"X) XY

In this case we are assuming X is the tfransformed data &®. This can be easier to read but hides the
feature transformation process.

Capital Letter: Matrix or Random Variable?
» Both tend to be capitalized

» Unfortunately, there is no common convention ... you will have to use context.



——————
The Feature Matrix @ ¢ N

o .. 0 .. O 16 0 1

Enfirely Quantitative Values

8
I )]
i — 9 \x ) — Rows of the & matrix
H c Rnxd _ ¢ [X] — 5 (rx@)‘) correspond to records.
DataFrame v Columns of the & matrix
5 ( (n>> correspond fo features.
— a’/’ —
d
Confusing notation!




——————
The Feature Matrix @ ¢ N

o .. 0 .. O 16 0 1

Enfirely Quantitative Values

I
: (b (Xl,c) E— Rows of the & matrix
H c R**4 ¢ [X] _ b (Xs) correspond to records.
- _ 2,0
*

DataFrame c e Columns of the & matrix
correspond fo features.

Notation Guide l ,

Ai,o : row i of matrix A.

A.)j . column j of matrix A.




Making Predictions

T —o(X1)
o c Rnxd — ¢[X] — _¢ (XZ,Q)
DataFrame "o
— & (Xon0)
d
Prediction

X X N f—& (X1,e)—

Y p— f"(X) p— q)e — _¢ (X2,o)

——} (Xn,e)

Rows of the & matrix
correspond to records.

Columns of the & matrix
correspond fo features.



Normal Equations

» Solution to the least squares model:

2
n

d
A 1
0 = arg min - Z Yi — 26j¢j(ﬂfi)
j=1

1=1

» Given by the normal equation:

> You should know this!
» You do not need to know the

A 1
0 = (@T@) oLy calculus based derivation.

> You should know the
geometric derivation ...



Geometric Derivation: Not Bonus Material

We decided that this is oo exciting to not know.

» Examine the column spaces:

Columns space of &

1
|
~

(I)o,la (I)o,2 7777 (I)o,d




n dimensional space Y Columns space of @

n él n :&1
9/\2 A
. Y2 A
Dy 1,Pe2,..., D, g : —_— =Y
04 - :
Un
]

Derivation

Oz@T(Y—cbé)

0=oTYy — dTdh
dTdh = dTY

(7®) oTY
O — (I)T(Y _ (1)6)) “Normal Equation”

Definition of orthogonality 9




The Normal Equation 6 = (#7®) &7y

R " TN TN
9 d= (I)T (I) d q)T )%
N YN y

Note: For inverse to exist ® needs to be full column rank.
- cannot have co-linear features

This can be addressed by adding regularization ...

In practice we will use regression software
(e.g., scikit-learn) to estimate ©




Least Squares Regression in Practice

» Use optimized software packages
> Address numerical issues with matrix inversion

» Incorporate some form of regularization
» Address issues of collinearity
» Produce more robust models

» We will be using scikit-learn:
> http://scikit-learn.org/stable/modules/linear_ model.html
» See Homework 6 for details!



http://scikit-learn.org/stable/modules/linear_model.html

Scikit Learn Models

» Scikit Learn has a wide range of models

» Many of the models follow a common pattern:

Ordinary Least Squares Regression

from sklearn import linear model

f = linear_model.LinearRegression(fit_intercept=True)
f.fit(train data[['X']], train_data['Y'])

Yhat = f.predict(test data[['X']])




Diagnosing Fit
- The Residuals
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Notebook Demo



» Generic Features: increase model expressivity
» Gaussian Radial Basis Functions:

r — Uy 2
Piops (T) = €Xp <_ H )\l.u H2>

50

® Training Data
RBF50

—A=05 &_ —— RBF10

= Transformed Model

—_— =2 ~— Basic Model

Gaussian RBF e - ’ ’ w0



Training Error

Loss Comparison

RMSE

= mpressive!

Basic Regression Sin Transformation RBF 10 RBF 50



Training vs Test Error

B Training Erorr

250 W Test Error

Failure to Generalize!l

200

150

RMSE

Impressively
- Bad! ®

100

50

0 Basic Regression Sin Transformation RBF 10 RBF 50



Training error typically

TrCIining vs Test Error under estimates test error.

+ & Underfitting = Overfitting >

Error

Model “"complexity”

(e.g., number of features)



Generalization: The Train-Test Split

» Training Data: used to fit model

Train - Test
Split

—

> Test Data: check generalization error

» How tfo splite
» Randomly, Temporally, Geo...
» Depends on application (usually randomly)

» What size?¢ (90%-10%)

» Larger training set - more complex models

» Larger test set - better estimate of
generalization error

> Typically between 75%-25% and 90%-10%

You can only use the test dataset once after deciding on the model.

Train

he
O
a

.
%8
O

H




Generalization: Validation Splif

Validation
Split

Validate - -
Generalization

Train - Test
Split

o
S
A

\%

5-Fola
Cross Validation

.
wn
O

—

Cross validation simulates multiple train test-splits on the tfraining data.



Recipe tor Successful Generalization
1. Split your data into training and test sets (0%, 10%)

2. Use only the training data when designing, fraining, and
tuning the model
» Use cross validation to test generalization during this phase
> Do not look at the test data

3. Commit to your final model and train once more using only
the training data.

4. Test the final model using the test data. If accuracy is noft
acceptable return to (2). (Get more fest dafa if possible.)

5. Train on all available data and ship if!




Returning to Regularization



Regularization

Parametrically Conftrolling the gotsee
Model Complexity * o *




Basic ldea

O = in—) L ,L ,L
argmemn; oss (yi, fo(z:))
Such that:

f@ Is not foo “complicated”

Can we make this

more formale




Basic ldea

. 1 «
arg min " E_l Loss (yi, fo(x;))

Regularization
such that: Parameter

Complexi’ry( fe) <

How do we
define thise




|dealized Notion of Complexity

Complexity( fo) < 3

» Focus on complexity of linear models:
> Number and kinds of features

> |deal definition:
d

. Number of
CompleXltY(fG) — Z I [93 # O] ggrﬁgem
71=1

> Whye



[deal “Regularization”

Find the best value of 6 which uses fewer than B features.

A 1l
6 = arg m@m - ZLOSS (Yi, fo(x:))

1=1

Such that:

d
Complexity(fy) = » 1[0, #0] < [3
j=1

Combinatorial search problem - NP-hard to solve in general.



Norm Balls

:

1O Norm Ball

(]
7

01

d
Complexity(fs) = » 1[6; # 0]

j=1



Norm Balls

Non-convex = Hard to solve
constrained optimization problem

01
d
Complexity(fy) = Z]I 0, £0] < 6

1O Norm Ball

j=1



Norm Balls

a R
N /
‘N ’ 9
L° Norm Ball . 1

\ /
N ,° Can we construct a convex

N V2 approximation?




Norm Balls

~ Convex
0, approximation!

LT Norm Ball Comple)qty f@ Z ‘6’ ‘ < B




Norm Balls

4

(]
7

Convex
6+ approximation!

d
Complexit — 0. <
L' Norm Ball plexity(fy) ;I il <8

J



Norm Balls

~ Convex
0, approximation!

L' Norm Ball
Complexity( fy) Z 0| <6




Norm Balls

(]
7

4

(]
U/

L
~ Convex
0, opproxima’rion!




Norm Balls

7
Other Approximations?e
L' Norm Ball' > 2 Pproximat

~ -

L] -




Norm Balls

4

(]
7

01

d
Complexit — 6’
2 Norm Ball plexity(fo) ; =7




Norm Balls

s
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d
2
L= NC omplexity( fy) 26’ < B
71=1



Norm Balls

01

d
2
L2 Norm Ball Complexity(fy) = Y 62 <
71=1




Norm Balls

4

(]
7

01

d
Complexit — 6’
2 Norm Ball plexity(fo) ; =7




1O Norm Ball L' Norm Ball L2 Norm Ball LT + L2Norm

Elastic Net
@’ %‘ 2 A

Ideal for Encourages Spreads weight Compromise
Feature Selection Sparse Solutions over features (robust) Need to tune
but combinatorically Convex! does not two regularization

difficult to optimize encourage sparsity parameters



Generic Regularization (Constrained)
> Defining Complexity(fy) = R(0)
. R
0 = arg min ; Loss (y;, fo(x;))

Suchthat: R(0) < 3

» There Is an equivalent unconstrained formulation
(obtained by Lagrangian duality)



Generic Regularization (Constrained)

> Defining Complexity(fy) = R(0)

) R
0 = arg m@ln E Z Loss (yi, fo (CIZZ)) + AR(0)

1=1
Regularization
Parameter

» There Is an equivalent unconstrained formulation
(obtained by Lagrangian duality)




Determining
the Optimal 1

DONT USE THE TEST SAMPLES TO CHOOSE

ATHE(MODEL S
' v
- . - 1 ’ .

v - ’F"

i Zuhs

YOU HAVE CROSS-VALIDATION FOR
THAT

memegenerator.ne

Optimal Value

v

Increasing A4 =

» Value of 1 determines bias-variance fradeoft
» Larger values - more regularization - more bias - less variance

» Determined through cross validation



Using Scikit-Learn for Regularized Regression

import sklearn.linear_model

» Regularization parameter a = 1/A
> larger a = less regularization - greater complexity - overfitting

» Lasso Regression (L1)
» linear_model.Lasso(alpha=3.0)
» linear _model.LassoCV() automatically picks a by cross-validation

» Ridge Regression (L2)
» linear _model.Ridge(alpha=3.0)
» linear_model.RidgeCV() automatically selects a by cross-validation

> Elastic Net (L1 + L2)
» linear_model.ElasticNet(alpha=3.0, 11 ratio = 2.0)
» linear _model.ElasticNetCV() automatically picks a by cross-validation



Standardization and the Intercept Term

Height = 0/, age in seconds + weight in tons

e

» Regularization penalized dimensions equally

> Standardization Standardization
> Ensure that each dimensions has the For each dimension k:
same scale T — Uk
» centered around zero Rk = o

» Intercept Terms

» Typically don't regularize intercept term
» Centery values (e.qg., subtract mean)



