The Bias Variance Tradeoff and Regularization

Slides by:

Joseph E. Gonzalez jegonzal@cs.berkeley.edu

Spring'18 updates:

Fernando Perez fernando.perez@berkeley.edu

Quick announcements

- Please be respectful on Piazza
 - > Both of your fellow students and of your teaching staff.
 - The teaching team monitors Piazza, but you can report any incidents directly to Profs. Gonzalez and/or Perez.
- Our infrastructure isn't perfect
 - We're working hard on improving it.
 - > We're building the plane while we fly it, full of passengers.
- We have a textbook: <u>textbook.ds100.org</u>
 - ➤ It's a work in progress!

Linear models for non-linear relationships

Advice for people who are dealing with non-linear relationship issues but would really prefer the simplicity of a linear relationship.

Is this data Linear?

What does it mean to be linear?

What does it mean to be a linear model?

$$f_{\theta} (\phi(x)) = \phi(x)^T \theta = \sum_{j=1}^{\kappa} \phi(x)_j \theta_j$$

In what sense is the above model linear?

Are linear models linear in the

- 1. the features?
- 2. the parameters?

Introducing Non-linear Feature Functions

> One reasonable feature function might be:

10

 \succ This is **still a linear model**, in the parameters θ

 $f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$

What are the fundamental challenges in learning?

Fundamental Challenges in Learning?

> Fit the Data

Provide an explanation for what we observe

Generalize to the World

- Predict the future
- > Explain the unobserved

Is this cat grumpy or are we overfitting to human faces?

Fundamental Challenges in Learning?

- > Bias: the expected deviation between the predicted value and the true value
- > Variance: two sources
 - Observation Variance: the variability of the random noise in the process we are trying to model.
 - **Estimated Model Variance:** the variability in the predicted value across different training datasets.

Bias

The expected deviation between the predicted value and the true value

> Depends on both the:

- \triangleright choice of f
- learning procedure

Observation Variance

the variability of the random noise in the process we are trying to model

- measurement variability
- > stochasticity
- > missing informati

Beyond our control (usually)

Estimated Model Variance

variability in the predicted value across different training datasets

Sensitivity to variation in the training data

Estimated Model Variance

variability in the predicted value across different training datasets

Sensitivity to variation in the training data

The Bias-Variance Tradeoff

Estimated Model Variance

Demo

Analysis of the Bias-Variance Trade-off

Analysis of Squared Error

- \succ For the test point x the expected error:
 - Random variables are red

Assume noisy observations

→ y is a random variable

True Function
$$y = h(x) + \epsilon$$

Noise term:

$$\mathbf{E}\left[\boldsymbol{\epsilon}\right]=0$$

$$\mathbf{Var}\left[\boldsymbol{\epsilon}\right] = \sigma^2$$

$$\mathbf{E}\left[\left(\mathbf{y}-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$

Assume *training data* is random $\rightarrow \theta$ is a random variable

Analysis of Squared Error

Goal:

$$\mathbf{E} \left| \left(\mathbf{y} - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right| =$$

Obs. Var. + $(Bias)^2$ + Mod. Var.

Other terminology:

"Noise" +
$$(Bias)^2$$
 + Variance

$$\mathbf{E}\left[\left(\mathbf{y}-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \mathbf{E}\left[\left(\mathbf{y}-h(x)+h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$

Subtracting and adding h(x)

Useful Eqns:
$$y = h(x) + \epsilon$$
$$\mathbf{E}\left[\epsilon\right] = 0$$
$$\mathbf{Var}\left[\epsilon\right] = \sigma^2$$

$$\mathbf{E}\left[\left(\frac{\mathbf{y}}{-}f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \mathbf{E}\left[\left(\frac{\mathbf{y}}{-}h(x) + h(x) - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$

Expanding in terms of a and b: $(a+b)^2 = a^2 + b^2 + 2ab$

$$=\mathbf{E}\left[\frac{a^{2}}{(y-h(x))^{2}}\right]+\mathbf{E}\left[\left(h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]\\+2\mathbf{E}\left[\frac{(y-h(x))\left(h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)}{(y-h(x)+\epsilon)2ab}\right]\\+2\mathbf{E}\left[\frac{y-h(x)+\epsilon}{\epsilon}\right]\\+2\mathbf{E}\left[\frac{\epsilon}{(h(x)-f_{\hat{\boldsymbol{\theta}}}(x))}\right]\\+2\mathbf{E}\left[\frac{\epsilon}{(h(x)-f_{\hat{\boldsymbol{\theta}}}(x))}\right]$$

$$\mathbf{E}\left[\left(\mathbf{y} - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \mathbf{E}\left[\left(\mathbf{y} - h(x) + h(x) - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$

Expanding in terms of a and b:

$$= \mathbf{E} \left[\left(\mathbf{y} - h(x) \right)^2 \right] + \mathbf{E} \left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right]$$

$$+ 2 \mathbf{E} \left[\boldsymbol{\epsilon} \left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right]$$

Independence of ϵ and θ

$$+2\mathbf{E}\begin{bmatrix} \epsilon \end{bmatrix} \mathbf{E} \left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right]$$

Useful Eqns:
$$y = h(x) + \epsilon$$
 $\mathbf{E}\left[\epsilon\right] = 0$ $\mathbf{Var}\left[\epsilon\right] = \sigma^2$

$$\mathbf{E}\left[\left(\frac{\mathbf{y}}{\mathbf{y}} - f_{\theta}(\mathbf{x})\right)^{2}\right] = \mathbf{E}\left[\left(\frac{\mathbf{y}}{\mathbf{y}} - h(\mathbf{x})\right)^{2}\right] + \mathbf{E}\left[\left(\frac{\mathbf{y}}{\mathbf{y}} - h(\mathbf{y})\right)^{2}\right] + \mathbf{E}\left[\left(\frac{\mathbf{y}}{\mathbf{y}} - h(\mathbf{y})\right)^{2}\right] + \mathbf{E}\left[\left(\frac{\mathbf{y}}{\mathbf{y}} -$$

Obs. Value

True Value

$$\mathbf{E}\left[\left(h(x)-f_{\hat{m{ heta}}}(x)
ight)^2
ight]$$
 True Value Pred. Value

Obs. Variance "Noise" Term

Model Estimation

Error

Useful Eqns:

$$y = h(x) + \epsilon$$

$$\mathbf{E}\left[\boldsymbol{\epsilon}\right] = 0$$

$$\mathbf{Var}\left[\boldsymbol{\epsilon}\right] = \sigma^2$$

$$\mathbf{E}\left[\left(h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right]=\text{Next we will show....}$$

$$(h(x) - \mathbf{E}[f_{\hat{\boldsymbol{\theta}}}(x)])^2 + \mathbf{E}[(\mathbf{E}[f_{\hat{\boldsymbol{\theta}}}(x)] - f_{\hat{\boldsymbol{\theta}}}(x))^2]$$

 $(Bias)^2$

Model Variance

- ≻Homs
- >Adding and Subtracting what?

$$\mathbf{E}\left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] =$$

$$\mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] + \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$

Expanding in terms of a and b: $(a+b)^2 = a^2 + b^2 + 2ab$

$$\mathbf{E} \begin{bmatrix} \left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^{2} \end{bmatrix} + \mathbf{E} \left[\left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2} \right] + 2\mathbf{E} \left[\left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right) \left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right) \right] + 2ab$$

$$\mathbf{E}\left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] =$$

$$\mathbf{E} \left[\left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] \right)^{2} \right] + \mathbf{E} \left[\left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] - f_{\hat{\boldsymbol{\theta}}}(x) \right)^{2} \right] + 2\mathbf{E} \left[\left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] \right) \left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right]$$

$$+ 2 \left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] \right) \mathbf{E} \left[\left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right]$$

$$+2\left(h(x)-\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)\mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]-f_{\hat{\boldsymbol{\theta}}}(x)\right)\right]$$

$$\mathbf{E}\left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \\ \mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^{2}\right] + \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] \\ + 2\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right) \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)\right] \\ + 2\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right) \left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)$$

$$\mathbf{E} \left| \left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right| =$$

$$\mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^{2}\right] + \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$

$$(h(x) - \mathbf{E} [f_{\hat{\theta}}(x)])^2 +$$

$$\mathbf{E}\left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] =$$

$$(h(x) - \mathbf{E} [f_{\hat{\boldsymbol{\theta}}}(x)])^2 + \mathbf{E} [\mathbf{E} [f_{\hat{\boldsymbol{\theta}}}(x)] - f_{\hat{\boldsymbol{\theta}}}(x)]^2$$

 $(Bias)^2$

Model Variance

$$\mathbf{E}\left[\left(\mathbf{y}-f_{\boldsymbol{\theta}}(\mathbf{x})\right)^2\right] =$$

$$\mathbf{E}\left[\left(\mathbf{y}-h(x)\right)^{2}\right] + \sigma^{2}$$

$$(h(x) - \mathbf{E}[f_{\hat{\theta}}(x)])^2 +$$

$$\mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$
 Model Variance

Obs. Variance

"Noise"

(Bias)²

Bias Variance Plot

Bias Variance Increasing Data

How do we control model complexity?

- > So far:
 - Number of features
 - Choices of features
- > Next: Regularization

Increasing Model Complexity →

Bias Variance Derivation Quiz

Match each of the following:

(1)
$$\mathbf{E}[y]$$

(2)
$$\mathbf{E}\left[\epsilon^2\right]$$

(3)
$$\mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^2\right]$$

(4)
$$\mathbf{E}\left[\epsilon\left(h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)\right]$$

http://bit.ly/ds100-sp18-bvt

A. 0

B. Bias²

C. Model Variance

D. Obs. Variance

E. h(x)

F. $h(x) + \epsilon$

Bias Variance Derivation Quiz

Match each of the following:

(1)
$$\mathbf{E}[y]$$

(2)
$$\mathbf{E}\left[\boldsymbol{\epsilon}^2\right]$$

(3)
$$\mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^2\right]$$

(4)
$$\mathbf{E}\left[\epsilon\left(h(x)-f_{\hat{\theta}}(x)\right)\right]$$

http://bit.ly/ds100-sp18-bvt

A. C

B. Bias²

C. Model Variance

D. Obs. Variance

E. h(x)

F. $h(x) + e^{-x}$

Regularization

Parametrically Controlling the Model Complexity

- > Tradeoff:
 - Increase bias
 - Decrease variance

Basic Idea of Regularization

Fit the Data

Penalize
Complex Models

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i)) + \lambda \mathbf{R}(\theta)$$

- \succ How should we define $R(\theta)$?
- > How do we determine λ?

Regularization Parameter

The Regularization Function R(0)

Goal: Penalize model complexity

Recall earlier: $\phi(x) = \left[x, x^2, x^3, \dots, x^p\right]$

- ➤ More features → overfitting ...
- ➤ How can we control overfitting through **θ** 50
- Proposal:
 set weights = 0
 to remove features -50

Common Regularization Functions

Ridge Regression (L2-Reg)
$$R_{\mathrm{Ridge}}(\theta) = \sum_{i=1}^d \theta_i^2$$

- Distributes weight across related features (robust)
- Analytic solution (easy to compute)
- Does not encourage sparsity > small but non-zero weights.

$$\frac{\text{LASSO}}{\text{(L1-Reg)}} R_{\text{Lasso}}(\theta) = \sum_{i=1}^{d} |\theta_i|$$

- Encourages sparsity by setting weights = 0
 - Used to select informative features
- Does not have an analytic solution > numerical methods

Regularization and Norm Balls

Regularization and Norm Balls

Python Demo!

The shapes of the norm balls.

Maybe show reg. effects on actual models.

Determining the Optimal λ

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i)) + \lambda \mathbf{R}(\theta)$$

- \triangleright Value of λ determines bias-variance tradeoff
 - ➤ Larger values → more regularization → more bias → less variance

Summary

$$\mathbf{E}\left[\left(\mathbf{y} - f_{\boldsymbol{\theta}}(\mathbf{x})\right)^{2}\right] =$$

$$\mathbf{E}\left[\left(\mathbf{y} - h(x)\right)^{2}\right] +$$

$$\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^{2} +$$

$$\mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$

Regularization

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss} (y_i, f_{\theta}(x_i)) + \lambda \mathbf{R}(\theta)$$

