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Quick announcements

» Please be respeciful on Piazza
» Both of your fellow students and of your teaching staff.

» The teaching tfeam monitors Piazza, but you can report any
incidents directly to Profs. Gonzalez and/or Perez.

» QOur Infrastructure isn't perfect
» We're working hard on improving if.
» We're building the plane while we fly it, full of passengers.

» We have a textbook: textbook.ds100.org
> It's a work in progress!



https://www.textbook.ds100.org/

LiInear models for
non-linear relationships

Advice for people who are dealing with non-linear relationship issues
but would really prefer the simplicity of a linear relationship.



Is this data Lineare

What does it mean to be linear?
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What does it mean to be a linear model?¢

In what sense is the above model linear?
Are linear models linear in the

1. tThe featurese

2. the parameterse



Intfroducing Non-linear Feature Functions

» One reasonable feature function might be:

¢($) — [1,&3‘,252] o PR T oL

> That is:

f@ (x) — 9() - 6’1% -+ 6’2332_300 10

> This is still a linear model, in the parameters @



What are the fundamental
challenges in learninge



Fundamental Challenges in Learning?

> Fit the Data

» Provide an explanation for what we
observe

> Generalize to the World
> Predict the future
» Explain the unobserved

Is this cat grumpy or are we
overfittfing to human faces?




Fundamental Challenges in Learning?

> Bias: the expected deviation between the
predicted value and the frue value

> Variance: two sources

» Observation Variance: the variability of the random noise in the
process we are trying to model.

> Estimated Model Variance: the variability in the predicted value
across different fraining datasets.



Bias

The expected deviation between the predicted value

and the true value
» Depends on both the:

» choice of f

> learning procedure

> Under-fitting
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Observation Variance

the variability of the random noise in the process we are
trying to model

» measurement variability
100

> stochasficity |

» missing informat
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Estimated Model Variance

variability in the predictfed value across different training
datasefs

» Sensitivity to variation in the fraining data
» Poor generalization

» Overfitting **
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Estimated Model Variance

variability in the predictfed value across different training
datasets

» Sensitivity to variation in the fraining data

» Poor generalization

o e Old Data

» Overfitting ™ . Y % NewDat
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The Bias-Variance Tradeoft

Estimated Model Variance
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Demo



Analysis of the
Bias-Variance Trade-off



Analysis of Squared Error

, Noise tferm:
» For the test point X the expected error:
» Random variables are red . E[e] =0
True Function vV [ ] o
ar c| = 0
Assume noisy observations s A

- yis arandom varioble K= h(;p) + €

Assume training data is random
- O is a random variable




Analysis of Squared Error

Goal:

E |(y— f,x)?] =

Obs. Var. + (Bias)?+ Mod. Var.

Other terminology:

“Noise” + (Bias)?+ Variance




E|(y— f;)°] = B|(y— h(@) + h(z) - f5(2))’]
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|

Subtracting and adding h(x)

Useful Egns:
y = h(x)+ €
Ele] =0

Var [¢] = o°




B (v~ f3(®)°] = B (v~ hx) + h(z) - f;())
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Expanding in terms of a and b:  (a + b)2 = a® + b° + 2ab

a’ b?

= E|(y—h(@)°| + E[(h(2) - f(2))’]

+2E [(y = h@)) (h(2) - f@)] 7
\ \y:h(x)+e}2ab / El] =0
\/ Var [e] =0

-

+2E [¢ (h(@) — £(0))]




E|(y— f;(2)*] = E|(y - h@) + h(@) - f(x))’|
Expanding in terms of a and b:
- E|(y - h(@))’| + E|(h(z) - fy(2))’|

oE e (h(z) = f@(x>)}}

Independence of e and 6

|
+2E [e] E [(h(z) — fy(2))] ) hla) +
=0

O Var |e




E |(y— fo(x))*]= 2

E [(y _ h(x))Q] +  Obs. Variance

‘ & “Noise” Term
Obs. Value

: Model
E [(h(x) — f3(2)) ] Estimation
my S S
Ele] =0
Var [¢] = o?




E [(h(af;) — fé(a:-))z} — Next we will show....
(h(z) = E[f3@)])"+ E|(E[f;(2)] - f3(x))”
(Bias)? Model Variance

»Howe
»Adding and Subtracting whate



B[ (h(x) ~ f;()*] =
E {(h(x) —E[fy(@)] +E[f3(2)] ~ fé(“’))ﬂ

\
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a b

Expanding in terms of a and b:  (a + b)2 = a” + b° + 2ab
2 2
b

a

E {(h(x) - E [fg(f)})Q} + E {(E fo()] - f@(f))ﬁ

+2E [(h(z) = E [f;(2)]) (B [fy(2)] = f;(2))]
2ab



E |(h(x) - f;(2)°] =

E|(h(z) ~E[f;(2)])*| + B|(E[f;2)] - f3())"
+2B [(h(z) — E [f3(2)]) (B [f;(2)] = f3(2))]










E |(h(x) - f;(2)°] =
(h(x) — E [f,@)]))*+ E|(Ef@)] - f@)’)
(Bias)? Model Variance



E (- )] + Obs. Variance
“Noise”

(h(z) —E[f;(2)])"+ (Bias)?

E [(E[ i(m)] — fé(a:))z} Model Variance



Bias Variance Plot

Optimal Value

Increasing Model Complexity =



Bias Variance Increasing Data

Increasing Model Complexity =



How do we control model complexity?

> So far;

> Number of features
> Choices of features

> Next: Regularization

Increasing Model Complexity =



Bias Variance Derivation Quiz
http://bit.ly/ds100-sp18-bvt

» Match each of the following:

A. O
) Bl B. Bias?
2) E :62] C. Model Variance
3) E '(h(x) B fé(l’)])z} D. Obs. Variance
] E.  h(x)
(4) E € (h(l‘) - fé(m))] F. h(x) + ¢



http://bit.ly/ds100-sp18-bvt

Bias Variance Derivation Quiz
http://bit.ly/ds100-sp18-bvt

» Match each of the following:

A. O
) Bl B. Bias?
2) E :62] C. Model Variance
3) E '(h(x) B fé(x)])z} D. Obs. Variance
] E.  h(x)
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http://bit.ly/ds100-sp18-bvt

Regularization

Parametrically Conftrolling the gotsee
Model Complexity *

> Tradeoff:

> Increase bias
> Decrease variance




Basic Idea of Regularization

Fit the Data

) R
0 = arg min — Z Loss (yi, fo(x;)) + AR(0)

1=1
Regularization
: Parameter
» How should we define R(0)?

> How do we determine A¢

Penalize

Complex Models




The Regularization Function R(©)
Goal: Penalize model complexity
Recall earlier:  ¢(x) = |z, 27,27, ..., "]

> More features -

OVGI’fITTIﬂg cee m ® Train Data
100 degree 1
= degree 2

» How can we control < .
overfitting through © = — degree 8
—— degree 16

/ degree 24

~— (degree 32

\N
5 10

> Proposal: 3
set weights =0
to remove features s




Common Regularization Functions

E ! 2
Rldge 0

» Distributes weight across related
features (robust)

» Analytic solution (easy to compute)

» Does not encourage sparsity -
small but non-zero weights.

Z 03

Encourages sparsity by setting
weights =0

» Used to select informative features

Does not have an analytic
solution =2 numerical methods
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Regularization and Norm Balls

Snaps to W4
corners

Snaps to
corners

Weight
sharing

Sparsity
inducing

Compromise...

L2 Norm (Ridge) L1 Norm (LASSO) L1 + L2 Norm
(Elastic Nef)

Two parameters ...



Python Demo!

The shapes of the norm balls.

Maybe show reg. effects on actual models.



Determining the Optimal A

A 1«
0 = arg min — Z Loss (i, fo(x;)) + AR(0)

1=1

» Value of 1 determines bias-variance fradeoft
» Larger values - more regularization - more bias - less variance



Optimal Value
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Regularization

f = arg mm — ZLOSS Yi, fo(i))

+ AR(@)

Snaps 1o 34
corners

L2 Norm (Ridge) L1 Norm (LASSO)



