Data 100: Principles and Techniques of Data Science
UC Berkeley, Summer 2023
Ed Datahub Gradescope Extenuating Circumstances
Welcome to Week 8!
Schedule
Week 1
- Jun 20
-
- Lecture 1 Course Overview
- Note 1
- Lab 1 Prerequisite Coding (due Jun 24)
- Homework 1A Plotting and the Permutation Test (due Jun 26)
- Homework 1B Prerequisite Math (due Jun 26)
- Jun 21
-
- Discussion 1 Math Prerequisites
- Solution
- Jun 22
Week 2
- Jun 26
-
- Lecture 4 Pandas III, EDA I
- Note 4
-
- Discussion 2 Pandas worksheet, worksheet notebook, groupwork notebook
- Solution
- Lab 2 Pandas (due Jul 1)
- Lab 3 Data Cleaning and EDA (due Jul 1)
- Homework 2 Pandas (due Jun 29)
- Jun 27
- Jun 28
-
- Lecture 6 Text Wrangling, Regex
- Note 6
- Jun 29
-
- Lecture 7 Visualization
- Note 7
- Homework 3 Tweets (due Jul 3)
- Jun 30
Week 3
- Jul 3
- Break (no lecture)
-
- Discussion 4 Regex (optional)
- Solution, Video Walkthrough
- Lab 4 Transformation (due Jul 8)
- Lab 5 Modeling, Summary Statistics, Loss Functions (due Jul 8)
- Homework 4 Bike Sharing (Visualization) (due Jul 6)
- Jul 4
- Independence Day (no lecture)
- Jul 5
- Jul 6
-
- Lecture 9 Modeling, SLR
- Note 9
- Homework 5A Sampling (due Jul 10)
- Homework 5B Modeling (due Jul 10)
- Jul 7
-
- Exam Prep 2 Regex, KDE Plots
- Solution
Week 4
- Jul 10
-
- Lecture 10 Constant model, loss, and transformations
- Note 10
-
- Discussion 6 Sampling, SLR
- Solution
- Lab 6 Ordinary Least Squares (due Jul 15)
- Lab 7 Gradient Descent, Feature Engineering (due Jul 15)
- Homework 6 Regression (due Jul 13)
- Jul 11
-
- Lecture 11 Ordinary Least Squares (Multiple Linear Regression)
- Note 11
- Jul 12
-
- Lecture 12 Gradient Descent
- Note 12
-
- Discussion 7 Transformations, OLS
- Solution
- Jul 13
-
- Lecture 13 Sklearn, Feature Engineering
- Note 13
- Project A1 Housing I (due Jul 17)
Week 5
- Jul 17
-
- Discussion 8 Gradient Descent, Feature Engineering
- Solution
- Lab 8 Model Selection (due Jul 22)
- Project A2 Housing II (due Jul 24)
- Jul 18
-
- Lecture 15 Cross-Validation, Regularization
- Note 15
- Jul 19
- Break (no lecture)
- Discussion 9 Exam Review
- Jul 20
- Midterm Midterm Exam (5-7 PM)
Week 6
- Jul 24
-
- Lecture 16 Random Variables
- Note 16
-
- Discussion 10 Cross-Validation, Regularization
- Solution
- Lab 9 Probability (due Jul 29)
- Lab 10 Logistic Regression (due Jul 29)
- Homework 7 Probability and Estimators (due Jul 27)
- Jul 25
-
- Lecture 17 Estimators, Bias, and Variance
- Note 17
- Jul 26
-
- Lecture 18 Logistic Regression I
- Note 18
-
- Discussion 11 Random Variables, BVT
- Solution
- Jul 27
-
- Lecture 19 Logistic Regression II
- Note 19
- Project B1 Spam & Ham I (due Jul 31)
- Jul 28
Week 7
- Jul 31
-
- Discussion 12 Logistic Regression
- Solution
- Lab 11 SQL (due Aug 5)
- Lab 12 PCA (due Aug 5)
- Project B2 Spam & Ham II (due Aug 3)
- Aug 1
- Aug 2
- Aug 3
- Homework 8 SQL, PCA (due Aug 7)
Week 8
- Aug 7
-
- Lecture 24 Decision Trees
- Note 24
- Lab 13 Decision Trees (optional)
- Aug 8
- Lecture 25 Conclusion
- Aug 9
- Break (no lecture)
- Discussion 15 Decision Trees, Final Review
- Aug 10
- Final Final Exam (5-7 PM)