Data 100: Principles and Techniques of Data Science
UC Berkeley, Fall 2023
Ed Datahub Gradescope Lectures Playlist Extenuating Circumstances
Welcome to Week 15 of Data 100!
Schedule
Week 1
- Aug 24
-
- Lecture 1 Introduction
- Note 1
- Lecture Participation 1 Lecture Participation 1
- Aug 25
- Lab 1 Prerequisite Coding (due Aug 29)
- Homework 1A Plotting and Permutation Test (due Aug 31)
- Homework 1B Prerequisite Math (due Aug 31)
Week 2
- Aug 29
- Lecture Participation 2 Lecture Participation 2
-
- Discussion 1 Prerequisites
- Solution
- Aug 31
- Lecture Participation 3 Lecture Participation 3
- Sep 1
- Lab 2A Pandas (due Sep 5)
- Homework 2A Food Safety (due Sep 7)
Week 3
- Sep 5
-
- Lecture 4 Pandas III
- Note 4
- Lecture Participation 4 Lecture Participation 4
- Sep 7
-
- Lecture 5 Data Cleaning and EDA
- Note 5
- Lecture Participation 5 Lecture Participation 5
- Sep 8
- Lab 2B Data Cleaning and EDA (due Sep 12)
- Homework 2B Food Safety II (due Sep 14)
Week 4
- Sep 12
-
- Lecture 6 Regex (and finish EDA)
- Note 6
- Lecture Participation 6 Lecture Participation 6
-
- Discussion 3 Pandas II, III Worksheet, Groupwork notebook
- Solution Worksheet, Groupwork notebook
- Sep 14
-
- Lecture 7 Visualization I
- Note 7
- Lecture Participation 7 Lecture Participation 7
- Sep 15
- Lab 3 Regex and EDA (due Sep 19)
- Homework 3 Tweets (due Sep 21)
Week 5
- Sep 19
-
- Lecture 8 Visualization II
- Note 8
- Lecture Participation 8 Lecture Participation 8
-
- Discussion 4 EDA, RegEx
- Solution
- Sep 21
- Lecture Participation 9 Lecture Participation 9
- Sep 22
-
- Exam Prep 3 Visualization
- Solution, recording
- Lab 4 Transformations (due Sep 26)
- Homework 4 Bike Sharing (due Sep 28)
Week 6
- Sep 26
-
- Lecture 10 Intro to Modeling, SLR
- Note 10
- Lecture Participation 10 Lecture Participation 10
- Sep 28
-
- Lecture 11 Constant model, Loss, and Transformations
- Note 11
- Lecture Participation 11 Lecture Participation 11
- Sep 29
- Lab 5 Modeling, Summary Statistics, and Loss Functions (due Oct 3)
- Homework 5A Sampling (due Oct 5)
- Homework 5B Modeling (due Oct 5)
Week 7
- Oct 3
-
- Lecture 12 Ordinary Least Squares
- Note 12
- Lecture Participation 12 Lecture Participation 12
-
- Discussion 6 Sampling and Modeling
- Solution
- Oct 5
-
- Lecture 13 Gradient Descent
- Note 13
- Lecture Participation 13 Lecture Participation 13
- Oct 6
- Lab 6 Ordinary Least Squares (due Oct 10)
- Homework 6 Regression (due Oct 12)
Week 8
- Oct 10
-
- Lecture 14 Sklearn and Feature Engineering
- Note 14
- Lecture Participation 14 Lecture Participation 14
-
- Discussion 7 OLS, Gradient Descent, and Feature Engineering
- Solution
- Oct 12
-
- Lecture 15 Case study (HCE): CCAO
- Note 15
- Lecture Participation 15 Lecture Participation 15
- Oct 13
-
- Exam Prep 6 OLS and Gradient Descent
- Solution, recording
- Lab 7 Gradient descent and Sklearn (due Oct 17)
- Project A1 Housing I (due Oct 21)
Week 9
- Oct 17
-
- Lecture 16 Cross-Validation and Regularization
- Note 16
- Lecture Participation 16 Lecture Participation 16
-
- Discussion 8 Midterm Review
- Solution
- Oct 18
- Midterm Midterm (7:00pm - 9:00pm)
- Oct 19
-
- Lecture 17 Random Variables
- Note 17
- Lecture Participation 17 Lecture Participation 17
- Oct 20
- Lab 8 Model Selection (due Oct 24)
- Project A2 Housing II (due Oct 26)
Week 10
- Oct 24
-
- Lecture 18 Estimators, Bias and Variance
- Note 18
- Lecture Participation 18 Lecture Participation 18
-
- Discussion 9 Housing, Cross-Validation, and Regularization
- Solution
- Oct 26
-
- Lecture 19 Bias, Variance, and Inference in Modeling
- Note 19
- Lecture Participation 19 Lecture Participation 19
- Oct 27
- Lab 9 Probability (due Oct 31)
- Homework 7 Probability (due Nov 2)
Week 11
- Oct 31
- Lecture Participation 20 Lecture Participation 20
-
- Discussion 10 RVs, Bias, and Variance
- Solution
- Nov 2
- Lecture Participation 21 Lecture Participation 21
- Nov 3
-
- Exam Prep 8 Bias-Variance Tradeoff
- Solution, recording
- Lab 10 SQL (due Nov 7)
- Homework 8 SQL (due Nov 9)
Week 12
- Nov 7
-
- Lecture 22 Logistic Regression I
- Note 22
- Lecture Participation 22 Lecture Participation 22
- Nov 9
-
- Lecture 23 Logistic Regression II
- Note 23
- Lecture Participation 23 Lecture Participation 23
- Nov 10
- Lab 11 Logistic Regression (due Nov 14)
- Project B1 Spam and Ham I (due Nov 16)
Week 13
- Nov 14
- Lecture 24 Guest Lecture on Large Language Models
- Lecture Participation 24 Lecture Participation 24
-
- Discussion 12 Logistic Regression
- Solution
- Nov 16
- Lecture Participation 25 Lecture Participation 25
- Nov 17
-
- Exam Prep 10 Logistic Regression
- Solution, recording
- Project B2 Spam and Ham II (due Nov 30)
Week 14
- Nov 21
- Lecture Participation 26 Lecture Participation 26
- Discussion No Discussion (Thanksgiving)
- Nov 23
- Lecture No Lecture (Thanksgiving)
- Nov 24
- Lab 12 PCA (due Nov 28)
Week 15
- Nov 28
-
- Lecture 27 Clustering
- Note 26
- Lecture Participation 27 Lecture Participation 27
- Nov 30
- Lecture 28 Neural Network and Conclusion
- Lecture Participation 28 Lecture Participation 28
- Dec 1
-
- Exam Prep 11 PCA, Clustering
- Solution, recording
- Lab 13 Clustering (due Dec 5)
Week 16
- Dec 4
- RRR
- Dec 5
- RRR
- Dec 6
- RRR
- Dec 7
- RRR
- Dec 8
- RRR
Week 17
- Dec 14
- Final Exam Final (11:30am - 2:30pm)