Data 100: Principles and Techniques of Data Science

UC Berkeley, Fall 2023

Ed Datahub Gradescope Lectures Playlist Extenuating Circumstances

Fernando Pérez

Fernando Pérez

He/Him/His

fernando.perez@berkeley.edu

Office Hours: Tue 11-12pm (Evans 419)

Narges Norouzi

Narges Norouzi

She/Her/Hers

norouzi@berkeley.edu

Office Hours: Mon 11-12pm (Soda 775)

Welcome to Week 15 of Data 100!

Schedule

Week 1

Aug 24
Lecture 1 Introduction
Note 1
Lecture Participation 1 Lecture Participation 1
Aug 25
Lab 1 Prerequisite Coding (due Aug 29)
Homework 1A Plotting and Permutation Test (due Aug 31)
Homework 1B Prerequisite Math (due Aug 31)

Week 2

Aug 29
Lecture 2 Pandas I
Note 2
Lecture Participation 2 Lecture Participation 2
Discussion 1 Prerequisites
Solution
Aug 31
Lecture 3 Pandas II
Note 3
Lecture Participation 3 Lecture Participation 3
Sep 1
Lab 2A Pandas (due Sep 5)
Homework 2A Food Safety (due Sep 7)

Week 3

Sep 5
Lecture 4 Pandas III
Note 4
Lecture Participation 4 Lecture Participation 4
Discussion 2 Pandas I Worksheet, Notebook
Solution
Sep 7
Lecture 5 Data Cleaning and EDA
Note 5
Lecture Participation 5 Lecture Participation 5
Sep 8
Exam Prep 1 Pandas
Solution worksheet, notebook, recording
Lab 2B Data Cleaning and EDA (due Sep 12)
Homework 2B Food Safety II (due Sep 14)

Week 4

Sep 12
Lecture 6 Regex (and finish EDA)
Note 6
Lecture Participation 6 Lecture Participation 6
Discussion 3 Pandas II, III Worksheet, Groupwork notebook
Solution Worksheet, Groupwork notebook
Sep 14
Lecture 7 Visualization I
Note 7
Lecture Participation 7 Lecture Participation 7
Sep 15
Exam Prep 2 Pandas II, RegEx worksheet, notebook
Solution worksheet, notebook, recording
Lab 3 Regex and EDA (due Sep 19)
Homework 3 Tweets (due Sep 21)

Week 5

Sep 19
Lecture 8 Visualization II
Note 8
Lecture Participation 8 Lecture Participation 8
Discussion 4 EDA, RegEx
Solution
Sep 21
Lecture 9 Sampling
Note 9
Lecture Participation 9 Lecture Participation 9
Sep 22
Exam Prep 3 Visualization
Solution, recording
Lab 4 Transformations (due Sep 26)
Homework 4 Bike Sharing (due Sep 28)

Week 6

Sep 26
Lecture 10 Intro to Modeling, SLR
Note 10
Lecture Participation 10 Lecture Participation 10
Discussion 5 Visualization worksheet, notebook
Solution
Sep 28
Lecture 11 Constant model, Loss, and Transformations
Note 11
Lecture Participation 11 Lecture Participation 11
Sep 29
Exam Prep 4 Sampling
Solution, recording
Lab 5 Modeling, Summary Statistics, and Loss Functions (due Oct 3)
Homework 5A Sampling (due Oct 5)
Homework 5B Modeling (due Oct 5)

Week 7

Oct 3
Lecture 12 Ordinary Least Squares
Note 12
Lecture Participation 12 Lecture Participation 12
Discussion 6 Sampling and Modeling
Solution
Oct 5
Lecture 13 Gradient Descent
Note 13
Lecture Participation 13 Lecture Participation 13
Oct 6
Exam Prep 5 Modeling
Solution, recording
Lab 6 Ordinary Least Squares (due Oct 10)
Homework 6 Regression (due Oct 12)

Week 8

Oct 10
Lecture 14 Sklearn and Feature Engineering
Note 14
Lecture Participation 14 Lecture Participation 14
Discussion 7 OLS, Gradient Descent, and Feature Engineering
Solution
Oct 12
Lecture 15 Case study (HCE): CCAO
Note 15
Lecture Participation 15 Lecture Participation 15
Oct 13
Exam Prep 6 OLS and Gradient Descent
Solution, recording
Lab 7 Gradient descent and Sklearn (due Oct 17)
Project A1 Housing I (due Oct 21)

Week 9

Oct 17
Lecture 16 Cross-Validation and Regularization
Note 16
Lecture Participation 16 Lecture Participation 16
Discussion 8 Midterm Review
Solution
Oct 18
Midterm Midterm (7:00pm - 9:00pm)
Oct 19
Lecture 17 Random Variables
Note 17
Lecture Participation 17 Lecture Participation 17
Oct 20
Lab 8 Model Selection (due Oct 24)
Project A2 Housing II (due Oct 26)

Week 10

Week 11

Oct 31
Lecture 20 SQL I
Note 20
Lecture Participation 20 Lecture Participation 20
Discussion 10 RVs, Bias, and Variance
Solution
Nov 2
Lecture 21 SQL II
Note 21
Lecture Participation 21 Lecture Participation 21
Nov 3
Exam Prep 8 Bias-Variance Tradeoff
Solution, recording
Lab 10 SQL (due Nov 7)
Homework 8 SQL (due Nov 9)

Week 12

Nov 7
Lecture 22 Logistic Regression I
Note 22
Lecture Participation 22 Lecture Participation 22
Discussion 11 SQL worksheet, notebook
Solution
Nov 9
Lecture 23 Logistic Regression II
Note 23
Lecture Participation 23 Lecture Participation 23
Nov 10
Exam Prep 9 SQL
Solution, recording
Lab 11 Logistic Regression (due Nov 14)
Project B1 Spam and Ham I (due Nov 16)

Week 13

Nov 14
Lecture 24 Guest Lecture on Large Language Models
Lecture Participation 24 Lecture Participation 24
Discussion 12 Logistic Regression
Solution
Nov 16
Lecture 25 PCA I
Note 24
Lecture Participation 25 Lecture Participation 25
Nov 17
Exam Prep 10 Logistic Regression
Solution, recording
Project B2 Spam and Ham II (due Nov 30)

Week 14

Nov 21
Lecture 26 PCA II
Note 25
Lecture Participation 26 Lecture Participation 26
Discussion No Discussion (Thanksgiving)
Nov 23
Lecture No Lecture (Thanksgiving)
Nov 24
Lab 12 PCA (due Nov 28)

Week 15

Nov 28
Lecture 27 Clustering
Note 26
Lecture Participation 27 Lecture Participation 27
Discussion 13 PCA
Solution
Nov 30
Lecture 28 Neural Network and Conclusion
Lecture Participation 28 Lecture Participation 28
Dec 1
Exam Prep 11 PCA, Clustering
Solution, recording
Lab 13 Clustering (due Dec 5)

Week 16

Dec 4
RRR
Dec 5
RRR
Dec 6
RRR
Dec 7
RRR
Dec 8
RRR

Week 17

Dec 14
Final Exam Final (11:30am - 2:30pm)