Lecture 21

why does the cross entropy loss make sense Imagine this scenario $coin, p_{H} = ? = 0$ $p_T = 1 + p_T = 1 + 3 = 1 - \Theta$ $Sample \text{Size} = 10$ $40, 0, 0, 0, 0, 0, 1, 1, 1$ L_{0} $h = 10$ $m_{\mu} = 6$ M_{τ} = M $-$ our best guess is $\hat{\theta} = 0.6$ Likelihood probability that ^I see this result given an estimate for θ $P(Y_{1-6}=0)Y_{1-10}=1100.6)$ High
 $P(Y_{1-6}=0)Y_{2-10}=1100.6)$ how P 4 $46 + 0$, 47.0 - 1 0 = 0.3)

Ok... Cool but what does this have to do w/ logistic regression. our data is a sample; the coin is the world model we try to D redict. $|f_{\theta}(x)| = |\theta(x^{\tau}\theta)| = |p(x^{\tau})| + |x|$ OUR gode maximize likelihood f_{ov} 6 $c \times^7 e$) = f_{\odot} $(c \times^7 e)$ = p Back to the coin p Y ⁶ ⁴⁷ ¹⁰ ¹ ^p $\ddot{\sigma}$ $S^{e'}$ Bernouille (p)
 $P^{\{e\}}$ C $1-P$ $S^{1-\{e\}}$ \vdash

 π p^{y} $(1-p)^{1-y}$ generalize for ⁿ samples of data and our model $f_{\theta}(\kappa) = 6(r^2\theta)$ $\frac{1}{2^{2}} \int_{\hat{L}^{2}} \frac{b^{2}}{2} (1-p)^{1-2c} dp$ Gi observed data p : predicted probability as output by $G(k^7b)$ $116(289)$ $1 - 6(x^2)$ 9 our goal for find best $\hat{\theta}$ parameters that maximize the likelihood of observing our deta samples $\{CN_{1},y_{1},\ldots Lx_{n},y_{n}\}$ θ i. θ (k'b) (1-6'(k'b) <u>পূ</u> $\bm{\mathcal{D}}$ Trivia fog is monotonically increasing;
therefore organizes for door! $\frac{\partial \text{logmax}}{\partial} f(x) = \frac{\text{logmax}}{\theta} log(f(x))$

 $\int f f(x) > \emptyset$ $\hat{\theta}$ = org are eagle $\hat{\pi}$ σ (x 0) σ (- σ (x 0) (1-y) = $\frac{b}{f}$ $\frac{b}{f}$ $\frac{109}{6}$ $\left(\frac{C}{x^{7}+6}\right)^{37}$ + $\left(\frac{b}{x^{7}+6}\right)^{57}$ + $\left(\frac{c}{x^{7}+6}\right)^{57}$

 \equiv

 $CPOS$ entropy $10J$