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Name:

Email: @berkeley.edu

Student ID:

Exam Room:

Name and SID of left neighbor:

Name and SID of right neighbor:

Instructions:
This midterm exam consists of 55 points spread out over 7 questions and the Honor Code
and must be completed in the 80 minute time period ending at 8:30, unless you have
accommodations supported by a DSP letter.

Note that some questions have circular bubbles to select a choice. This means that you
should only select one choice. Other questions have boxes. This means you should select
all that apply. Please shade in the box/circle to mark your answer.

Q0 [1 Pt]: Honor Code
As a member of the UC Berkeley community, I act with honesty, integrity, and respect for
others. I am the person whose name is on the exam and I completed this exam in accordance
with the Honor Code.

Signature:
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1 Regular Ice, SQLite Sugar [6 Pts]

Marshall Mathers’ Data 100 study group is hold-
ing a mid-semester social on Memorial Glade,
and he is tasked to get bubble tea (i.e., boba).
Since it’s a Data 100 event, he surveys the stu-
dents and staff for some information about the
boba shops they’ve been to in Berkeley, and com-
piles the data into a table named BobaReview.
Each row is a person’s review of a boba shop; the
first few rows are shown to the right.

(a) [2 Pts] Marshall wants to find all the reviews that rated a shop at least 4 (out of a maxi-
mum rating of 5). Help Marshall by writing a one-line SQL query that outputs all rows of
BobaReview where a boba shop was rated at least 4 out of 5.

;

(b) [4 Pts] Marshall now wants to find the 5 top-rated boba shops in Berkeley. Help Marshall
by completing the below SQL query, which selects the 5 boba shops from BobaReviewwith
the highest average rating. Your query result should have three columns labeled shop name,
avg rating, and avg price, which are the shop name, average rating, and average price
paid for boba, respectively. Rows should be sorted by the average rating, with the highest
rated boba shop as the first row. The first few rows of the query result are shown below:

SELECT ___(i)___ FROM BobaReview ___(ii)___;

(i) What goes in the blank denoted by (i)?

SELECT

(ii) What goes in the blank denoted by (ii)? Use as few/many lines as you need.
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2 Expectation and Variance [6 Pts]

Manak’s is a store which sells pencils and miniature wax replicas of the head of legendary 1980s
singer Kuldeep Manak. Suppose that the pencils are each $2 and the wax heads are $10. By
carefully studying its customer records, Manak’s has determined that the chance of a customer
buying a pencil is 50 percent, and the chance of a customer buying a wax head is 10 percent. A
summary of the probabilities and cost per item are given below.

Probability of Purchase Price Per Item
ppencil = 0.50 $2
phead = 0.10 $10

Furthermore, the store observes that these purchases are independent, and limits purchases to at
most one of each item at Manak’s. So for example, the chance that a customer buys both a pencil
and a wax head is 0.5× 0.1 = 0.05, for which they spend $12.

Suppose 10 customers enter the store. Define the random variable X as the total purchase value
in dollars for the 10-person group. Assume all customers act independently of each other.

(a) [3 Pts] Compute E[X], the expected total purchase value. Show your work.

(b) [3 Pts] Compute SD(X), the standard deviation of the total purchase value. Show your work.
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3 Welcome to the Linear Regression Multiverse [6 Pts]

Consider the multiple linear regression model, where X is an arbitrary, full column rank design
matrix of size n × p, and Y is the true response vector (i.e., outcome vector). Let Ŷ = Xθ̂ be
the predicted response vector, where the optimal parameter vector θ̂ is calculated using the least
squares estimate.

(a) [1 Pt] What is the dimension of θ̂?

⃝ A. n× 1 ⃝ B. p× 1 ⃝ C. 1× n ⃝ D. 1× p

(b) [2 Pts] Define the residual vector e = Y− Ŷ. Which of the following is true about the vector
v = XT e? Select the best answer.

⃝ A. All of the entries of v are always zero.

⃝ B. All of the entries of v are zero only if X contains a bias column of all ones, 1.

⃝ C. Some of the entries of v are zero.

⃝ D. Some of the entries of v are zero only if X contains a bias column of all ones, 1.

(c) [2 Pts] Which of the following is true about (I − X(XTX)−1XT )Y? Define I as the identity
matrix with appropriate dimensions. Select all that apply.

□ A. It is in the span of X.

□ B. It is orthogonal to the first column of X.

□ C. It has dimension n× p.

□ D. It is the residual vector e = Y− Ŷ.

(d) [1 Pt] Suppose we scale up every element in our design matrix X by a scalar a. What is the
new least squares estimate if we use this new design matrix?

⃝ A. anpθ̂

⃝ B. 1
anp θ̂

⃝ C. aθ̂

⃝ D. 1

aθ̂

⃝ E. 1
a
θ̂
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4 Hit or Miss [12 Pts]

Belcalis is using gradient descent for a constant model with fθ(x) = θ. The empirical risk that she
is trying to optimize is mean squared error:

R(θ) =
1

n

n∑
i=1

(yi − fθ(xi))
2

Belcalis uses gradient descent with an initialization of θ(0) and a learning rate of α. Our dataset
contains three data points (xi, yi) as shown below.

x y
1 2
9 4
4 6

(a) [3 Pts] Derive the explicit gradient update for θ(t+1) at time t+1 given θ(t) at time t in terms
of only yi, assuming Belicalis chooses a learning rate α = 0.5. Make sure to fully simplify
your answer by multiplying out all expressions and collecting all terms.

(b) [3 Pts] Suppose that instead of choosing α = 0.5, Belicalis chooses a learning rate of α = 1
with a random initialization of our parameter θ(0). Unfortunately, with this configuration
Belicalis discovers that rather than converging very quickly (as in part (a)), batch gradient
descent never converges for this learning rate! Which of the following reasons describes
why? Justify your answer on the following page.

Hint: What is the gradient update corresponding to α = 1? Use the update to find θ(1) and
θ(2) in terms of θ(0).

⃝ A. Gradient descent oscillates between growing negative and positive parameter
values forever.

⃝ B. Gradient descent oscillates between two parameter values θ(0) and θ(1) forever.

⃝ C. Gradient descent returns an unbounded update since the gradient is infinity.

⃝ D. Gradient descent returns an unbounded update since the gradient is always 0.
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Justify your answer to part (b).

(c) [2 Pts] Suppose that Belcalis runs gradient descent with the same objective R(θ) and dataset
above, with a chosen initialization θ(0) = 1 and an unknown fixed learning rate α > 0.
Which of the following may occur given that batch gradient descent converges? Select all that
apply.

□ A. Batch gradient descent converges to a local minimum that is not a global mini-
mum.

□ B. Batch gradient descent converges to a global minimum.

□ C. Batch gradient descent converges to a local maximum that is not a global maxi-
mum.

□ D. Batch gradient descent converges to a global maximum.

(d) [2 Pts] Belcalis decides to implement stochastic gradient descent (SGD), where she chooses
a batch size of 1 and samples the dataset randomly without replacement. If she uses learning
rate α = 0.5, which of the following are possible values of the parameter θ(t) at some arbitrary
time step t > 0 of applying SGD? Select all that apply.

□ A. θ(t) = 0

□ B. θ(t) = 2

□ C. θ(t) = 3

□ D. θ(t) = 4

□ E. θ(t) = 5

□ F. θ(t) = 6
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(e) [2 Pts] Suppose that Belcalis changes the empirical risk function to mean absolute error
(MAE):

Rnew(θ) =
1

n

n∑
i=1

|yi − fθ(xi))|

Which of the following are true if Belcalis now minimizes this new empirical risk on the
constant model using gradient descent with learning rate α = 0.01? Select all that apply.

□ A. It is impossible to use gradient descent with this empirical risk since it is non-
differentiable.

□ B. Batch gradient descent will always find an optimal θ that minimizes this empiri-
cal risk.

□ C. Batch gradient descent may not find an optimal θ that minimizes this empirical
risk.

□ D. The derivative of this empirical risk with respect to θ is undefined when yi =
fθ(xi) for any i.
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5 Exponential Regularization [10 Pts]

Namjoon is experimenting with regularization functions, and he wants to explore an exponential
regularization function Pow(θ):

Pow(θ) = λ

p∑
i=1

10θi

(a) [2 Pts] Suppose Namjoon fits a multiple linear regression model Ŷ = Xθ with L2 loss and
the exponential regularization function specified above, so that the objective function being
minimized is 1

n
||Y − Xθ||22 + λ

∑p
i=1 10

θi . Which of the following are true? Select all that
apply.

□ A. The optimal solution is the least squares estimate, (XTX)−1XTY.

□ B. The optimal solution is (X−1 + λI)XTY.

□ C. Gradient descent can be used to solve for the optimal solution with exponential
regularization.

□ D. λ represents the regularization coefficient.

(b) [2 Pts] For the model described in part (a), which of the following is true about the entries of
the optimal θ̂ vector as λ approaches positive infinity (i.e. λ → ∞)?

⃝ A. θ̂ → −∞
⃝ B. θ̂ → 0

⃝ C. θ̂ → ∞
Justify your answer (2–3 sentences maximum):
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(c) [2 Pts] Which of the following are true if we compare our exponential regularization with L1

and L2 regularization if we use the same λ for all three? Select all that apply.

□ A. Exponential regularization always penalizes large positive coefficients more than
L2 regularization.

□ B. Exponential regularization always penalizes large negative coefficients more
than L2 regularization.

□ C. L2 regularization is more effective than exponential regularization when we want
parameters close to zero.

□ D. L1 regularization often performs feature selection by setting parameters corre-
sponding to non-contributing features to 0, but exponential regularization cannot be
used for feature selection.

(d) [2 Pts] Which of the following could plausibly be a plot of the magnitude (i.e., absolute value)
of model bias as a function of λ if we use multiple linear regression with exponential regular-
ization? Assume that values on the x-axis are linear from 0 to asymptotically large λ.

Circle the letter corresponding to the most plausible plot.

A. B.

C. D.
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(e) [2 Pts] To choose the most optimal λ, Namjoon uses 5-fold cross-validation to train 5 models
and stores the appropriate root-mean square error for each fold and λ. Given the collected
statistics below about the cross-validation error for each model, help Namjoon choose the
values of λ (among the 5 listed) that is the best to use with exponential regularization.

⃝ A. λ = 0.001

⃝ B. λ = 0.01

⃝ C. λ = 0.1

⃝ D. λ = 1

⃝ E. λ = 10
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6 Food Features [13 Pts]

Crossroads, the Cal Dining Hall, wants to discover more about what is in a Cal student’s diet. They
collect data on what 10,000 Cal students ate for lunch over 100 consecutive days, along with the
total number of calories of each lunch.

The first few rows of the dataset are shown below, where each row represents the daily lunch diet
of an individual; since we record 100 lunches for each person, there are 1,000,000 = 106 rows. You
may assume that there are only 4 foods: rice, pizza, orange juice, and sushi.

(a) [2 Pts] Suppose Crossroads uses the fol-
lowing boolean featurization for encod-
ing an individual’s lunch, where they cre-
ate ”dummy” features corresponding to all
foods. They set these dummy features of all
foods for an individual’s lunch on a particu-
lar day to 1 and not eaten to 0.

A featurized sample of the dataset is shown
to the right (corresponding to the same first
few rows above).

Note that the name and day are not included as features. The index (name, day) is simply
present to identify the rows.

We construct a design matrix X of shape (106, 4) that contains only the featurization from
the above DataFrame to predict the total calories in an individual’s lunch using ordinary least
squares. Which of the following is true?

□ A. The optimal coefficients θ̂ must be zero.

□ B. The design matrix X must be full column rank.

□ C. The sum of each feature vector represents the number of servings eaten of each food.

□ D. The sum of each row vector represents the number of unique foods eaten by a person
for a particular lunch.
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(b) [2 Pts] Jennie modifies the featurization
from the previous part slightly; instead of
setting all dummy features of all foods
eaten by an individual on that day to 1 and
not eaten to 0, we set the dummy features
of all foods eaten to the number of serv-
ings they ate.

A featurized sample of the dataset is
shown to the right.

We construct a design matrix X of shape 106 by 4 that contains only the featurization from
the above DataFrame to predict the total calories in an individual’s lunch using ordinary least
squares. What does the optimal coefficient θ̂j represent?

⃝ A. Typical calories consumed through food j per day

⃝ B. Typical calories consumed through food j per serving size

⃝ C. Typical calories consumed by person j per day

⃝ D. Typical calories consumed by person j per serving size

(c) [6 Pts] For this part, suppose we have a DataFrame lunch mat as shown below:

Jennie wants to predict the number of calories eaten for lunch today (calories) using the
number of calories for the two previous days’ lunches. The linear model now has 3 parameters
θ = (θ0, θ1, θ2), respectively corresponding to an intercept term and calories from 1 and
2 days ago, respectively. To see whether she can interpret her models’ parameters, Jennie
decides to construct bootstrapped 95% confidence interval for the new model parameters.

Below we show the code Jennie writes to bootstrap the least squares estimate 5,000 times and
create the confidence interval for θ1. Some notes:

• Note the helper function get param1 takes in a design matrix X and response vector
y and returns the least squares estimate for θ̂1 using sklearn.

• df.sample(n, replace) draws a random sample (with/without replacement, spec-
ified by boolean replace) of n rows from a Pandas dataframe df.
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• np.percentile(a, q) computes the q-th percentile of the array/list a.

Complete Jennie’s code on the next page.
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Fill in the blanks for part (c).

from sklearn.linear_model import LinearRegression

def get_param1(X, y):

model = LinearRegression(fit_intercept = _________)

model.fit(X, y)

theta1_estimate = model.coef_[____]

return theta1_estimate

estimates = []

num_rows, num_cols = lunch_mat.shape

for i in range(5000):

boot_sample = lunch_mat.sample(___________, ___________)

boot_X = boot_sample[_____________________________________]

boot_y = boot_sample[_____________________________________]

boot_param1 = get_param1(boot_X, boot_y)

estimates.append(boot_param1)

lower = np.percentile(estimates, ___________)

upper = np.percentile(estimates, ___________)

confidence_interval = (lower, upper)

(d) [3 Pts] Jennie extends the code you wrote in part (c) to generate bootstrapped 95% confidence
intervals for all parameters:

θ0 : [44.808, 45.013], θ1 : [−0.026, 0.342], θ2 : [−0.142, 1.324]

What conclusions can we draw from these confidence intervals? Select all that apply.

□ A. Given Morgan’s lunch calories for the last two days, we cannot predict Morgan’s
lunch calories today because the true thetas might be zero.

□ B. The features of the design matrix might be collinear (i.e., multicollinear).

□ C. A person’s lunch calories yesterday may have no true relationship with lunch calories
today.

□ D. Given Morgan’s lunch calories for the last 2 days, we can make a reasonable predic-
tion for Ashley’s lunch calories today.
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7 Following Instructions [1 Pt]

If you are taking your exam in-person, you can earn this point by writing your Student ID in the
top right corner of each page.

If you are taking your exam online, you can earn this point by doing both of the following:

1. Write the answer to each question on a different page.

2. Assign the pages to the correct question subpart when submitting on Gradescope.

Reminder: Complete the Honor Code question (Q0) on the front of the exam for another point.

[Optional] Do you like cats or dogs? Draw your favorite of the two pets in the box below to cast
your vote!

Congratulations on finishing the exam!
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Ordinary Least Squares
Multiple Linear Regression Model:  with design matrix , response vector , and predicted vector . If there are  features plus

a bias/intercept, then the vector of parameters . The vector of estimates  is obtained from fitting the

model to the sample .

Concept Formula Concept Formula

Mean squared error Normal equation

Least squares estimate,

if  is full rank

Residual vector, 

Multiple 

(coefficient of determination)

Ridge Regression

L2 Regularization

Squared L2 Norm of 

Ridge regression estimate

(closed form)

LASSO Regression

L1 Regularization

L1 Norm of 

Scikit-Learn
Suppose sklearn.model_selection and sklearn.linear_model are both imported packages.

Package Function(s) Description

sklearn.linear_model LinearRegression() Returns an ordinary least squares Linear Regression model.

LassoCV(), RidgeCV() Returns a Lasso (L1 Regularization) or Ridge (L2 regularization)

linear model, respectively, and picks the best model by cross

validation.

model.fit(X, y) Fits the scikit-learn model to the provided X and y.

model.predict(X) Returns predictions for the X passed in according to the fitted

model.

sklearn.model_selection train_test_split(*arrays, test_size=0.2) Returns two random subsets of each array passed in, with 0.8 of

the array in the first subset and 0.2 in the second subset.

Probability
Let  have a discrete probability distribution .  has expectation  over all possible values ,

variance , and standard deviation .

The covariance of two random variables  and  is . If  and  are independent, then .

Notes Property of Expectation Property of Variance

 is a random variable.  are

scalars.

 are random variables.

 is a Bernoulli random variable that

takes on value 1 with probability 

and 0 otherwise.

 is a Binomial random variable

representing the number of ones in 

 independent Bernoulli trials with

probability  of 1.

Ŷ = Xθ X Y Ŷ p

θ = [θ0, θ1, … , θp]T ∈ Rp+1 θ̂

(X,Y)

R(θ) = 1
n ||Y − Xθ||2

2
X

T
Xθ̂ = X

T
Y

X θ̂ = (XT
X)−1

X
T
Y

e e = Y − Ŷ

R2

R2 =
variance of fitted values

variance of y

1
n ||Y − Xθ||2

2 + λ||θ||2
2 θ ∈ R

d ||θ||2
2 = ∑d

j=1 θ
2
j

θ̂ridge = (XT
X + nλI)−1

X
T
Y

1
n ||Y − Xθ||2

2 + λ||θ||1 θ ∈ R
d ||θ||1 = ∑d

j=1 |θj|

X P(X = x) X E[X] = ∑x xP(X = x) x

Var(X) = E[(X − E[X])2] SD(X) = √Var(X)

X Y E[(X − E[X])(Y − E[Y ])] X Y Cov(X,Y ) = 0

X a, b ∈ R E[aX + b] = aE[X] + b Var(aX + b) = a2Var

X,Y E[X + Y ] = E[X] + E[Y ] Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

X

p

E[X] = p Var(X) = p(1 − p)

Y

n

p

E[Y ] = np Var(Y ) = np(1 − p)



Central Limit Theorem

Let  be a sample of independent and identically distributed random variables drawn from a population with mean  and

standard deviation . The sample mean  is normally distributed, where  and .

Parameter Estimation

Suppose for each individual with fixed input , we observe a random response , where  is the true relationship and  is

random noise with zero mean and variance .

For a new individual with fixed input , define our random prediction  based on a model fit to our observed sample . The

model risk is the mean squared prediction error between  and :

Suppose that input  has  features and the true relationship  is linear with parameter . 

Then  and  for a parameter estimate  fit to the observed sample .

Gradient Descent

Let  be an objective function to minimize over , with some optimal . Suppose  is some starting estimate at , and 

 is the estimate at step . Then for a learning rate , the gradient update step to compute  is

where  is the partial derivative/gradient of  with respect to , evaluated at .

SQL

(X1, … ,Xn) μ

σ Xn =
n

∑
i=1

Xi
–

E[Xn] = μ
–

SD(Xn) = σ/√n
–

x Y = g(x) + ϵ g ϵ

σ2

x Ŷ (x) (X,Y)

Y Ŷ (x)

E[(Y − Ŷ (x))2] = σ2 + (E[Ŷ (x)] − g(x))
2

+ Var(Ŷ (x)).

x p g θ ∈ R
p+1

Y = fθ(x) = θ0 +∑p

j=1 θjxj + ϵ Ŷ = f
θ̂
(x) θ̂ (X,Y)

L(θ,X,Y) θ θ̂ θ(0) t = 0
θ(t) t α θ(t+1)

θ(t+1) = θ(t) − α∇θL(θ(t),X,Y),

∇θL(θ(t),X,Y) L θ θ(t)

SQLite syntax:

SELECT [DISTINCT] 
    {* | expr [[AS] c_alias] 
    {,expr [[AS] c_alias] ...}} 
FROM tableref {, tableref} 
[[INNER | LEFT ] JOIN table_name
    ON qualification_list] 
[WHERE search_condition] 
[GROUP BY colname {,colname...}]
[HAVING search_condition] 
[ORDER BY column_list] 
[LIMIT number] 
[OFFSET number of rows];

Syntax Description

SELECT
column_expression_list

List is comma-separated. Column expressions may include

aggregation functions (MAX, FIRST, COUNT, etc). AS renames

columns. DISTINCT selects only unique rows.

FROM s INNER JOIN t ON cond Inner join tables s and t using cond to filter rows; the INNER
keyword is optional.

FROM s LEFT JOIN t ON cond Left outer join of tables s and t using cond to filter rows.

FROM s, t Cross join of tables s and t: all pairs of a row from s and a row

from t

WHERE a IN cons_list Select rows for which the value in column a is among the values

in a cons_list.

ORDER BY RANDOM LIMIT n Draw a simple random sample of n rows.

ORDER BY a, b DESC Order by column a (ascending by default) , then b (descending).

CASE WHEN pred THEN cons
ELSE alt END

Evaluates to cons if pred is true and alt otherwise. Multiple

WHEN/THEN pairs can be included, and ELSE is optional.

WHERE s.a LIKE 'p' Matches each entry in the column a of table s to the text

pattern p. The wildcard % matches at least zero characters.

LIMIT number Keep only the first number rows in the return result.

OFFSET number Skip the first number rows in the return result.


