DS 100/200: Principles and Techniques of Data Science Date: Fall 2019
Extra Probability Problems Solutions
Name:

1. (a) Let p denote the probability that a particular item A appears in a simple random sample (SRS). Suppose we collect 5 independent simple random samples, i.e., each SRS is obtained by drawing from the entire population. Let X denote the random variable for the total number of times that A appears in these 5 samples. What is the expected value of X, i.e., $\mathbb{E}[X]$? Your answer should be in terms of p.

Solution: Let X_{i} denote a Bernoulli random variable equal to 1 if A appears in the $i^{\text {th }}$ sample and 0 otherwise, $i=1, \ldots, 5$. Then, the X_{i} are independent and identically distributed $\operatorname{Bernoulli}(p)$ random variables and $\mathbb{E}[X]=\mathbb{E}\left[X_{1}+\right.$ $\left.X_{2}+X_{3}+X_{4}+X_{5}\right]=5 \mathbb{E}\left[X_{1}\right]=5 p$.
(b) What is $\operatorname{Var}(X)$? Again, your answer should be in terms of p.

Solution: By the linearity property for the variance of sums of independent random variables, $\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}+X_{2}+X_{3}+X_{4}+X_{5}\right)=5 \operatorname{Var}\left(X_{1}\right)=$ $5 p(1-p)$.
2. Show that if two random variables X and Y are independent, then $\operatorname{Var}(X-Y)=$ $\operatorname{Var}(X)+\operatorname{Var}(Y)$. You may not use the fact that $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ if X and Y are independent. Instead, use linearity of expectations and the definition of variance. Hint: If two random variables are independent, then their covariance is 0 and $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Solution:

$$
\begin{aligned}
\operatorname{Var}(X-Y) & =\mathbb{E}\left[(X-Y)^{2}\right]-\mathbb{E}[X-Y]^{2} \\
& =\mathbb{E}\left[X^{2}-2 X Y+Y^{2}\right]-(\mathbb{E}[X]-\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]-\mathbb{E}[Y]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]-2 \mathbb{E}[X Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X] \mathbb{E}[Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y) .
\end{aligned}
$$

3. Consider rolling (independently) one fair six-sided die and one loaded six-sided die.

Let X_{1} and X_{2} denote, respectively, the number of spots from one roll of the fair die and one roll of the loaded die. Suppose the distribution for the loaded die is

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{2}=1\right)=\operatorname{Pr}\left(X_{2}=2\right)=\frac{1}{16} \\
& \operatorname{Pr}\left(X_{2}=3\right)=\operatorname{Pr}\left(X_{2}=4\right)=\frac{3}{16} \\
& \operatorname{Pr}\left(X_{2}=5\right)=\operatorname{Pr}\left(X_{2}=6\right)=\frac{4}{16} .
\end{aligned}
$$

Let $Y=X_{1} X_{2}$ denote the product of the two numbers of spots.
(a) What is the expected value of Y.

Solution:

$$
\begin{aligned}
\mathbb{E}\left[X_{1} X_{2}\right] & =\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \\
& =\frac{1+2+3+4+5+6}{6} \cdot\left(\frac{1}{16} \cdot(1+2)+\frac{3}{16} \cdot(3+4)+\frac{4}{16} \cdot(5+6)\right) \\
& =\frac{7}{2} \cdot \frac{17}{4} \\
& =\frac{119}{8}=14.875
\end{aligned}
$$

(b) What is the variance of Y.

Solution:

$$
\begin{aligned}
\operatorname{Var}\left(X_{1}\right) & =\frac{1+4+9+16+25+36}{6}-\frac{7^{2}}{2}=\frac{35}{12} \\
\operatorname{Var}\left(X_{2}\right) & =\frac{1}{16} \cdot(1+4)+\frac{3}{16} \cdot(9+16)+\frac{4}{16} \cdot(25+36)-\frac{17^{2}}{4}=\frac{35}{16} \\
\operatorname{Var}\left(X_{1} X_{2}\right) & =\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{1}\right) \mathbb{E}\left[X_{2}\right]^{2}+\operatorname{Var}\left(X_{2}\right) \mathbb{E}\left[X_{1}\right]^{2} \\
& =\frac{35}{12} \cdot \frac{35}{16}+\frac{35}{12} \cdot \frac{17^{2}}{4}+\frac{35}{16} \cdot \frac{7^{2}}{2} \\
& =\frac{5495}{64}=85.859375
\end{aligned}
$$

(c) Estimate the sampling distribution of Y by simulating 10,000 rolls of the pair of dice. Provide a graphical display of the distribution. Compare the mean and variance from this estimate to the values you computed above.

Solution: The plot should look something like:

The mean and variance from the sampling distribution should be similar to the values calculated in the previous two parts.

