
Data 100, Midterm 2

Summer 2020

Instructions:
• This exam consists of 8 questions, worth a total of 65 points.

• This exam must be completed and submitted in the 105 minute time period ending
at 8:45 PM PDT, unless you have accommodations supported by a DSP letter or are
taking an alternate.

• This exam is open-book and open-Internet, but collaboration is strictly forbidden.

• Please show your work for computation questions as we may award partial
credit. For multiple-choice questions, if you are writing on blank paper, clearly
write the letter of the choice you are selecting.

• Please write your initials on the top of every page.

Statement of Academic Integrity

Please COPY, SIGN, and DATE the following statement on your exam page. You must do this
even if you are writing the exam on blank sheets of paper.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I
will neither give nor receive assistance while taking this exam. I understand that I must write this
exam on paper.
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Modeling and Loss Functions [11 Pts]

1. Suppose we observe the growth (g) of some novel bacteria over time (t). We collect n pairs of
data, {(t1, g1), (t2, g2), ..., (tn, gn)} and decide to model growth as ĝ = θ log(t). We decide to
use squared loss as our loss function. Assume that we are not using regularization.

(a) [2 Pts] Suppose we are provided with the following data.

gi log(ti)
3 2
6 3
9 4

What is the average loss for our model on this dataset, as a function of θ? (The only
variable your answer should contain is θ. No need to simplify.)

(b) [2 Pts] Write an expression for the average loss of our model, R(θ), for any set of data
with n observations. (Your answer should be in terms of θ, gi, ti, and n, and should not
involve the specific set of values provided in part a.)

(c) [4 Pts] What is the value of θ̂ that minimizes R(θ) that you determined in part b?
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(d) [3 Pts] Suppose our model is now

ĝ = θ0 + θ1 log(t) + θ2(log(t))2

Is this a linear model? Answer “yes” or “no”.

• If yes, write out the design matrix X for this model using the data in part a.
• If no, explain in one sentence why.
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Fun with Linear Regression [13 Pts]

2. Consider the simple linear regression model without an intercept, ŷ = θx. Assume throughout
the entirety of this problem that we are performing least squares linear regression (i.e. that
we are choosing parameters that minimize average squared loss), and that we are not using
regularization.

(a) [1 Pt] True or False: The point (x̄, ȳ) always lies on the regression line ŷ = θ̂x.
© A. True
© B. False

(b) [2 Pts] Suppose we create a new feature x′ using x′ = 10x. Let r(x, y) be the correlation
coefficient that we discussed in class.
True or False: r(x, y) = r(x′, y).
© A. True
© B. False

(c) [3 Pts] Now suppose we use x′ as the independent variable in our simple linear model
without an intercept. That is, our model is now ŷ = βx′.
Are the optimal slopes of our two models the same — in other words, is β̂ for our new
model equal to θ̂ for the original model? If yes, explain in one sentence why. If no, give
an expression for β̂ in terms of θ̂.

(d) [3 Pts] Suppose we decide to now include an intercept term in our simple linear model.
We fit two models. One uses x, and the other uses x′ as defined above.

• Model A: ŷ = θ0 + θ1x

• Model B: ŷ = β0 + β1x
′

Is θ̂1 = β̂1? If yes, explain in one sentence why. If no, give an expression for β̂1 in terms
of θ̂1.
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(e) [4 Pts] Is θ̂0 = β̂0? If yes, explain in one sentence why. If no, give an expression for β̂0
in terms of θ̂0.
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OLS vs. Ridge Regression [10 Pts]

3. Consider the least squares regression model, Ŷ = Xθ. Assume that X and Y refer to the design
matrix and true response vector for our training data.

Let γ̂ be the parameter vector that minimizes mean squared error without regularization.
Specifically:

γ̂ = arg min
γ

1

n
||Y− Xγ||22

Let β̂ be the parameter vector that minimizes mean squared error with L2 regularization, using
a non-negative regularization hyperparameter λ (i.e. ridge regression). Specifically:

β̂ = arg min
β

1

n
||Y− Xβ||22 + λ

p∑
j=1

β2
j

For each of the following problems, fill in the blank.

(a) [1 Pt] If we set λ = 0, then ||γ̂||22 is ||β̂||22.
© A. less than
© B. equal to
© C. greater than
© D. impossible to tell

(b) [2 Pts] For each of the remaining parts, you can assume that λ is set such that the pre-
dicted response vectors for our two models (Ŷ = Xγ̂ and Ŷ = Xβ̂) is different.
The training RMSE of the model Ŷ = Xγ̂ is than the model Ŷ = Xβ̂.
© A. less than
© B. equal to
© C. greater than
© D. impossible to tell

(c) [2 Pts] Now, assume we’ve fit both models using our training data, and evaluate both
models on some unseen testing data.
The test RMSE of the model Ŷ = Xγ̂ is than the model Ŷ = Xβ̂.
© A. less than
© B. equal to
© C. greater than
© D. impossible to tell
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(d) [2 Pts] Assume that our design matrix X contains a column of all ones. The sum of the
residuals of our model Ŷ = Xβ̂ is .
© A. equal to 0
© B. not necessarily equal to 0

(e) [1 Pt] As we increase λ, the bias of the model Ŷ = Xβ̂ tends to .
© A. increase
© B. stay the same
© C. decrease

(f) [1 Pt] As we increase λ, the model variance of the model Ŷ = Xβ̂ tends to .
© A. increase
© B. stay the same
© C. decrease

(g) [1 Pt] As we increase λ, the observation variance of the model Ŷ = Xβ̂ tends to .
© A. increase
© B. stay the same
© C. decrease
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Feature Engineering [5 Pts]

4. Suppose we have one qualitative variable that that we convert to numerical values using one-
hot encoding. We’ve shown the first four rows of the resulting design matrix below:

a b c
1 0 0
1 0 0
0 0 1
0 1 0

(a) [2 Pts] Say we train a linear model m1 on these data. Then, we replace all of the 1 values
in column a with 3’s and all of the 1 values in column b with 2’s and train a new linear
model m2. Neither m1 nor m2 have an intercept term. On the training data, the average
squared loss for m1 will be that of m2.
© A. greater than
© B. less than
© C. equal to
© D. impossible to tell

(b) [2 Pts] To account for the intercept term, we add a column of all ones to our design matrix
from part a. That is, the resulting design matrix has four columns: a with 3’s instead of
1’s, b with 2’s instead of 1’s, c, and a column of all ones. What is the rank of the new
design matrix with these four columns?
© A. 1
© B. 2
© C. 3
© D. 4

(c) [1 Pt] Suppose we divide our sampling frame into three clusters of people, numbered 1,
2, and 3. After we survey people, along with our survey results, we save their cluster
number as a new feature in our design matrix. Before training a model, what should we
do with the cluster column? (Note: This part is independent of parts a and b.)
© A. Leave as is
© B. One-hot encode it
© C. Normalize it
© D. Use bag of words



Data 100 Page 9 of 13 Initials:

(Cross-)validate me [6 Pts]

5. Suppose we have a design matrix X comprising of n observations, d features, and an additional
intercept term. We decide to use X to create, tune, and evaluate a regularized linear regression
model with two regularization hyperparameters, λ1 and λ2. We have i different choices for λ1
and j different choices for λ2, so there are i · j possible combinations of λ1 and λ2.

We set aside 20% of our data to use as a test set and perform k-fold cross-validation to tune
our hyperparameters. We compute the cross-validation error of each of the i · j possible com-
binations of λ1 and λ2 values, and our goal is to find the combination of values with the low-
est cross-validation error. All following answers should be expressed in terms of i, j, n, d, k,
and/or constants only (except for part c).

(a) [2 Pts] For a single combination of hyperparameter values, how many model parameters
do we fit?

(b) [2 Pts] How many observations are in the validation set of each fold?

(c) [2 Pts] How many model parameters do we calculate in total? Your answer can be in
terms of A, your answer to part a.
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Gradient Descent [6 Pts]

6. We define the ”sigmoid loss” to be L(y, ŷ) = σ(ŷ− y). Suppose we decide to use the constant
model ŷ = θ.

(a) [3 Pts] The loss for a single observation i is σ(θ − yi). Determine the partial derivative
of this loss with respect to θ. Recall from Homework 1 that ∂

∂x
σ(x) = σ(x)(1 − σ(x)).

You can have σ in your answer.

(b) [1 Pt] For the constant model ŷ = θ, which of the following values of θ would result in
the lowest sigmoid loss for a single observation i?
© A. θ = yi + 100

© B. θ = yi

© C. θ = yi − 100

(c) [2 Pts] The average sigmoid loss across our entire dataset is

R(θ) =
1

n

n∑
i=1

σ(θ − yi)

Write out the standard gradient descent update equation for this average loss. Your answer
should include θ(t+1), θ(t), α (the learning rate), and your answer from part a, for which
you may use the letter A as a substitute.
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Linear Separability [7 Pts]

7. Our goal is to fit a logistic regression model with x (a continuous quantitative variable) as the
sole feature and y (a binary class label) as the response. A scatter plot of x and y is shown
below.

(a) [1 Pt] Is this dataset linearly separable?
© A. Yes
© B. No
© C. Impossible to tell

(b) [2 Pts] We now wish to fit a logistic regression model with an intercept term to our data.
Remember, such a model takes the form ŷ = P (Y = 1|x) = σ (θ0 + θ1x).
Which of the following is closest to the scale parameter θ1?
© A. -100
© B. -1
© C. 1
© D. 100

(c) [2 Pts] Which of the following is closest to P (Y = 1|x = 1)? (Hint: You may want to
sketch what this model looks like before answering.)
© A. 0
© B. 1

4

© C. 1
2

© D. 3
4

© E. 1
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Now, we have a different set of x and y values, as shown below:

(d) [1 Pt] Is this dataset linearly separable?
© A. Yes
© B. No
© C. Impossible to tell

(e) [1 Pt] As with the previous dataset, we now wish to fit a logistic regression model with
an intercept to the data. Which of the following is closest to P (Y = 1|x = 4)?
© A. 0
© B. 1

4

© C. 1
2

© D. 3
4

© E. 1
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Evaluating Classifiers [7 Pts]

8. Suppose we trained a logistic regression classifier for some binary classification task. The true
labels y and predicted probabilities P (Y = 1|x) are given below.

y P (Y = 1|x)
1 0.9
1 0.6
0 0.6
0 0.55
1 0.4
0 0.3

In order to make predictions, we need to threshold P (Y = 1|x). We use our thresholds as
follows:

Ŷ =

{
1 P (Y = 1|x) ≥ T

0 P (Y = 1|x) < T

We want to decide between three possible thresholds for P (Y = 1|x).

• Model A uses a threshold of T = 0.25.

• Model B uses a threshold of T = 0.5.

• Model C uses a threshold of T = 0.75.

(a) [1 Pt] What is the precision of Model C?

(b) [1 Pt] What is the recall of Model C?

(c) [2 Pts] Suppose our model was built to predict whether or not an individual has some
disease. If we predict that they do, we call them in for further testing. Which of the three
models is best suited for this task, and why?

(d) [3 Pts] Let T ∗ be the threshold of a model whose precision and recall are equal. For our
given labels and predicted probabilities, what is a possible value of T ∗?


