Data 100 & 200A Spring 2019

Principles and Techniques of Data Science

MIDTERM 2 SOLUTIONS

INSTRUCTIONS

- You have 70 minutes to complete the exam.
- \bullet The exam is closed book, closed notes, closed computer, closed calculator, except for two 8.5" \times 11" crib sheets of your own creation.
- Mark your answers on the exam itself. We will *not* grade answers written on scratch paper.

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Exam room	
Enterior Toom	
Name of the person to your left	
Name of the person to your right	
All the work on this exam is my own.	
(please sign)	
(Piease sign)	

Terminology and Notation Reference:

$\exp(x)$	e^x
$\log(x)$	$\log_e x$
Linear regression model	$E[Y X] = X^T \beta$
Logistic (or sigmoid) function	$\sigma(t) = \frac{1}{1 + \exp(-t)}$
Logistic regression model	$P(Y=1 X) = \sigma(X^T\beta)$
Squared error loss	$L(y,\theta) = (y-\theta)^2$
Absolute error loss	$L(y,\theta) = y - \theta $
Cross-entropy loss	$L(y,\theta) = -y\log\theta - (1-y)\log(1-\theta)$
Bias	$\operatorname{Bias}[\hat{\theta}, \theta] = E[\hat{\theta}] - \theta$
Variance	$Var[\hat{\theta}] = E[(\hat{\theta} - E[\hat{\theta}])^2]$
Mean squared error	$MSE[\hat{\theta}, \theta] = E[(\hat{\theta} - \theta)^2]$

1. (8 points) Feature Engineering

For each dataset depicted below in a scatterplot, fill in the squares next to all of the letters for the vector-valued functions f that would make it possible to choose a column vector β such that $y_i = f(x_i)^T \beta$ for all (x_i, y_i) pairs in the dataset. The input to each f is a scalar x shown on the horizontal axis, and the corresponding y value is shown on the vertical axis.

$$(A) f(x) = [1 \quad x]^T$$

(B)
$$f(x) = \begin{bmatrix} x & 2x \end{bmatrix}^T$$

(C)
$$f(x) = [1 \ x \ x^2]^T$$

(D)
$$f(x) = [1 |x|]^T$$

(E) None of the above

Notes: In (D), x=-1 and x=1 must have the same y value, so the V shape cannot be moved horizontally with a linear combination of those features. Dataset (ii) was intended to be parabolic, but the original printed version of the exam had an error in the parabola shape; sorry! Credit was given for C or E.

2. (6 points) Estimation

A learning set $(x_1, y_1), \ldots, (x_{10}, y_{10})$ is sampled from a population where X and Y are both binary.

The learning set data are summarized by the following table of row counts:

x	y	Count
0	0	2
0	1	3
1	0	1
1	1	4

(a) (4 pt) You decide to fit a constant model $P(Y = 1|X = 0) = P(Y = 1|X = 1) = \alpha$ using the cross-entropy loss function and no regularization. What is the formula for the empirical risk on this learning set for this model and loss function? What estimate of the model parameter α minimizes empirical risk? You must show your work for finding the estimate $\hat{\alpha}$ to receive full credit.

Recall: Since Y is binary, P(Y = 0|X) + P(Y = 1|X) = 1 for any X.

Empirical Risk: $-\frac{7}{10}\log\alpha - \frac{3}{10}\log(1-\alpha)$

Estimate $\hat{\alpha}$ (show your work):

$$0 = \frac{7}{10\alpha} - \frac{3}{10(1-\alpha)}$$
$$0 = 7(1-\alpha) - 3\alpha$$
$$10\alpha = 7$$
$$\alpha = \frac{7}{10}$$

(b) (2 pt) The true population probability P(Y=0|X=0) is $\frac{1}{3}$. Provide an expression in terms of $\hat{\alpha}$ for the bias of the estimator of P(Y=0|X=0) described in part (a) for the constant model. You may use $E[\ldots]$ in your answer to denote an expectation under the data generating distribution of the learning set, but do not write $P(\ldots)$ in your answer.

Bias
$$[\hat{P}(Y=0|X=0), P(Y=0|X=0)] = E[1-\hat{\alpha}] - \frac{1}{3}$$
 or equivalently $\frac{2}{3} - E[\hat{\alpha}]$

Note: the value for $\hat{\alpha}$ computed in part (a) is just for this particular learning set, which is just one sample among many possible samples. We don't know from this one dataset that $E[\hat{\alpha}] = \frac{7}{10}$. Bias does not describe a particular estimate from a particular dataset, but instead refers to the average of estimates obtained from repeated random sampling from the population, i.e., the average of $\hat{\alpha}$ from multiple learning sets.

3. (6 points) Linear Regression

A learning set of size four is sampled from a population where X and Y are both quantitative:

$$(x_1, y_1) = (2.5, 3)$$

 $(x_2, y_2) = (2, 5)$
 $(x_3, y_3) = (1, 3)$
 $(x_4, y_4) = (3, 5)$.

You fit a linear regression model $E[Y|X] = \beta_0 + X\beta_1$, where β_0 and β_1 are scalar parameters, by ridge regression, minimizing the following objective function:

$$\frac{1}{4} \sum_{i=1}^{4} (y_i - (\beta_0 + x_i \beta_1))^2 + \frac{\beta_0^2 + \beta_1^2}{3}.$$

(a) (4 pt) Fill in all blanks below to compute the parameter estimates that minimize this regularized empirical risk. (You do not need to compute their values; just fill in the matrices appropriately.)

$$X_n^T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ & & & \\ 2.5 & 2 & 1 & 3 \end{bmatrix}$$

$$Y_n^T = egin{bmatrix} 3 & 5 & 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = (X_n^T X_n + \begin{bmatrix} \frac{4}{3} & 0 \\ & & \\ 0 & \frac{4}{3} \end{bmatrix})^{-1} X_n^T Y_n.$$

Note: the common answer of $\frac{1}{3}$ on the diagonal of the regularization term was given full credit.

(b) (2 pt) Without computing values for $\hat{\beta}_0$ and $\hat{\beta}_1$, write an expression for the squared error loss of the learning set observation (x_4, y_4) in terms of $\hat{\beta}_0$ and $\hat{\beta}_1$ and any relevant numbers. Your solution should not contain any of \hat{y}_4 , x_4 , or y_4 , but instead just numbers and $\hat{\beta}_0$ and $\hat{\beta}_1$.

$$L(y_4, \hat{y}_4) = (5 - (\hat{\beta}_0 + 3\hat{\beta}_1))^2$$

is a regularization/penalty term that appears only for the purpose of estimating β on the training set.

5

Name:

5.	(12)	points)	Logistic	Regression

(a) (2 pt) Bubble the expression that describes the odds ratio $\frac{P(Y=1|X)}{P(Y=0|X)}$ of a logistic regression model. Recall: P(Y=0|X) + P(Y=1|X) = 1 for any X.

 $\bigcirc X^T \beta$ $\bigcirc -X^T \beta$ $\bigcirc * \exp(X^T \beta)$ $\bigcirc \sigma(X^T \beta)$ \bigcirc None of these

(b) (2 pt) Bubble the expression that describes P(Y=0|X) for a logistic regression model.

 $\bigcirc * \sigma(-X^T\beta) \qquad \bigcirc 1 - \log(1 + \exp(X^T\beta)) \qquad \bigcirc 1 + \log(1 + \exp(-X^T\beta)) \qquad \bigcirc \text{None of these}$

(c) (2 pt) Bubble all of the following that are typical effects of adding an L_1 regularization penalty to the loss function when fitting a logistic regression model with parameter vector β .

 \square The magnitude of the elements of the estimator of β are increased.

 \square The magnitude of the elements of the estimator of β are decreased.

 \square All elements of the estimator of β are non-negative.

 \square Some elements of the estimator of β are zero.

☐ None of the above.

Note: The first two options were not specific enough, and so the credit for that part of the question was given to all answers. The total magnitude of the estimated β will decrease with an L_1 penalty, but some individual elements of β may stay constant or increase.

(d) (3 pt) What would be the primary disadvantage of a regularization term of the form $\sum_{j=1}^{J} \beta_j^3$ rather than the more typical ridge penalty $\sum_{j=1}^{J} \beta_j^2$ for logistic regression? Answer in one sentence.

The minimum of β^3 is attained at $\beta = -\infty$, so minimizing empirical risk would always result in a degenerate solution.

(e) (3 pt) For a logistic regression model $P(Y=1|X)=\sigma(-2-3X)$, where X is a scalar random variable, what values of x would give $P(Y=0|X=x) \geq \frac{3}{4}$? You must show your work for full credit.

$$P(Y = 0|X = x) \ge \frac{3}{4}$$

$$1 - P(Y = 1|X = x) \ge \frac{3}{4}$$

$$P(Y = 1|X = x) \le \frac{1}{4}$$

$$\frac{1}{1 + \exp(2 + 3x)} \le \frac{1}{4}$$

$$1 + \exp(2 + 3x) \ge 4$$

$$2 + 3x \ge \log 3$$

$$x \ge \frac{\log 3 - 2}{3}$$