
Data 100, Final

Summer 2020

Note:
• This exam was administered over two days in two different formats.

• Day 1 consisted of 12 questions, and was worth a total of 75 points. It appears first
in this document.

• Day 2 consisted of 9 questions, and was worth a total of 75 points. It appears after
Day 1 in this document.
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1. (6 points)

(a) (1 pt) True or False: Decision trees will always have 100% accuracy on the training set.

# True

 False

False. If we have two data points with the exact same values for each feature, but are in different classes,
then the decision tree will be unable to split those points into different nodes, and at least one will be in
the wrong class.

(b) (1 pt) True or False: On a dataset that is linearly separable, decision trees will always return a linear
decision boundary.

# True

 False

False. Take the case where we have two features: x1 and x2, with the line separating the two classes being
x2 = x1. In this case, the decision tree will return a jagged step boundary, not a line.

(c) (2 pt) Which of the following are reasons that random forests are less prone to overfitting? Select all that
apply.

2 Random forests always have access to more training data than a single decision tree.

2 Random forests always institute a node depth limit.

� A random forest is an example of an ensemble method that involves one or more decision trees.

2 Random forests always have a higher testing accuracy than a single decision tree.

2 None of the above

Random forests, by nature, create many different decision trees and then stack them on top of each other
to determine which class each area falls in. Techniques such as bootstrapping and the ensemble method,
which random forests employ, reduce model variance, and thus, the chance of overfitting.

(d) (2 pt) Let’s say we have a dataset with 3 classes, labeled A, B, and C, from which we want to build a
classifier using a decision tree. The following table displays how many points are in each class:

Class Number of Points

A 4
B 4
C 2

Recall from lecture that we want to minimize the weighted entropy of our splits. What is the weighted
entropy of the following split?

Node 1: 4 in class A, 0 in class B, 2 in class C; Node 2: 0 in class A, 4 in class B, 0 in class C.

# 0

# 10

# − 1
3 log2

1
3 −

2
3 log2

2
3

# 2
5 (− 1

3 log2
1
3 −

2
3 log2

2
3 )

 3
5 (− 1

3 log2
1
3 −

2
3 log2

2
3 )

# None of the above
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2. (3 points)

The following are questions on K-means and agglomerative clustering.

(a) (1 pt) Suppose we run average (average linkage) agglomerative clustering 10 times from start to finish
on the same dataset. Assume that tie-breaking is done randomly, but that no two points have the same
distance from each other. This will _________ result in the same clustering of points each of the 10
times.

# Always

 Sometimes

# Never

(b) (1 pt) Suppose that after an iteration of the K-means clustering algorithm, the cluster centers change
locations, but the labels assigned to each point do not change. In such a situation, it is __________
true that the algorithm has converged because the following iteration will not change the labels assigned to
each point.

 Always

# Sometimes

# Never

(c) (1 pt) A data point has a negative silhouette score if it is on average closer to the points in its own cluster
than the points in the closest neighboring cluster.

# True

 False
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3. (7 points)

Suppose you have data on Berkeley course enrollment for Summer 2020, including the following information for
each student:

• last 4 digits of SID number
• course enrolled in (assume each student is only enrolled in one course)
• academic level
• major
• cumulative GPA

(a) (1 pt) Select all suitable visualizations for comparing the number of Statistics majors enrolled in each
summer course.

2 Scatterplot

2 Boxplot

� Barplot

2 Histogram

2 Violin plot

2 None of the above

(b) (1 pt) You create a boxplot to visualize the distribution of cumulative GPA for each academic level, which
is stored numerically (1-5, where 1 = freshman to 5 = graduate).

A boxplot is suitable because academic level is a ____ variable and cumulative GPA is a ____ variable.

# Quantitative; quantitative

 Qualitative; quantitative

# Quantitative; qualitative

# Qualitative; qualitative
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(c) (1 pt) You create the plot below using the first 10 rows of the dataset. Which of the following combinations
of encodings is being used in your plot?

# x, y

# x, y, height

# x, y, area

 x, y, color

# x, y, area, color
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(d) (2 pt) Consider the following contour plot, which depicts a student’s final exam score in Data 100 on the
x-axis and their cumulative GPA on the y-axis.

Which of the following conclusions can be drawn from the above plot? Select all that apply.

� Final exam scores are bimodal

2 Final exam scores are unimodal

2 GPA is bimodal

� GPA is unimodal

2 The correlation between final exam scores and GPA is greater than 0.3

2 None of the above
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(e) (2 pt) The triangular kernel is an alternative to the Gaussian and Boxcar kernels that were introduced in
Lab 5. The triangular kernel centered at 0 with α = 1 is defined by:

T (x) =

{
1− |x| if |x| ≤ 1

0 else

Which of the following would be the equation of a triangular kernel centered at z with α = 1?

A:

Tα(x, z) =

{
|z − 1| − |x| if |x− z| ≤ 1

0 else

B:

Tα(x, z) =

{
1− |x− z| if |x− z| ≤ 1

0 else

C:

Tα(x, z) =

{
1− |x− z| if |x| ≤ |1− z|
0 else

D:

Tα(x, z) =

{
|x− z| if |x| ≤ |1− z|
0 else

# A

 B

# C

# D
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4. (10 points)

Suppose we are trying to fit a linear model Ŷ = Xθ. Assume that our design matrix X contains n rows and
p+ 1 columns, the first of which contains the value 1 for each observation.

Let Ẋ be the mean-centered version of X (that is, each column except the intercept column is scaled to have
a mean of 0), and let Ẏ = [ẏ1, ẏ2, ..., ẏn] be the mean-centered version of Y, our true response vector. Assume
that p ≥ 5.

In the first few subparts of this question, we will explore the models that result from un-regularized linear
regression, depending on whether or not we center our data.

β̂ = arg min
θ

1

n

n∑
i=1

(
yi − XTi θ

)2

γ̂ = arg min
θ

1

n

n∑
i=1

(
ẏi − ẊTi θ

)2
(a) (3 pt) Assuming that both X and Ẋ have full column rank, which of the following are guaranteed to be

true?

2 β̂0 = γ̂0

� β̂1 = γ̂1

� β̂2 = γ̂2

� β̂p = γ̂p

� γ̂0 = 0

� The MSE of the original model (corresponding to β̂) on the original data is the same as the MSE of
the new model (corresponding to γ̂) on the centered data.

2 None of the above

(b) (2 pt) Which of following are guaranteed to be true regarding un-regularized ordinary least squares
linear regression with an intercept term?

� The mean of the residuals is 0.

� The mean of the fitted values ŷ equals the mean of the observed values y.

2 The weight corresponding to the intercept term is positive.

2 There is a unique solution to the normal equations.

2 None of the above
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(c) (1 pt) In the remaining subparts of this question, we explore the models that result from ridge regression,
depending on whether or not we regularize the intercept term (θ0) of our model.

θ̂A = arg min
θ

1

n

n∑
i=1

(
yi − XTi θ

)2
+ λ

p∑
k=0

θ2i

θ̂B = arg min
θ

1

n

n∑
i=1

(
yi − XTi θ

)2
+ λ

p∑
k=1

θ2i

Note that the only difference between θ̂A and θ̂B is that to determine θ̂A, we regularize the intercept term,
and in θ̂B we do not.

Assume we fix λ = 2 in both models. If we use Ẋ instead of X above (i.e. if all columns of our design
matrix, other than the intercept column, are centered), then θ̂A = θ̂B .

 Always true

# Sometimes true

# Never true

(d) (1 pt) In the remaining subparts of this problem, we are not assuming that our design matrix
is mean-centered, i.e. we are not using Ẋ.

Again, assume we fix λ = 2 in both models. Let MSEA be the training MSE using θ̂A and MSEB be the
training MSE using θ̂B .

MSEA ≥ MSEB

 Always true

# Sometimes true

# Never true

(e) (1 pt) Again, assume we fix λ = 2 in both models. Suppose, for just this subpart, that our model is
the simple linear model. Below, we’ve plotted our test data, with our sole feature on the x-axis and true
responses on the y-axis.

Which parameter will achieve a lower test MSE?

# θ̂A

 θ̂B
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(f) (1 pt) Now, let’s consider the predictions made by the two models.

As λ approaches positive infinity, what value do the predictions of the first model (θ̂A) approach?

 0

# the mean of the true y values

# 1
λ

# λ

# p+ 1

# Impossible to tell

(g) (1 pt) As λ approaches positive infinity, what value do the predictions of the first model (θ̂B) approach?

# 0

 the mean of the true y values

# 1
λ

# λ

# p+ 1

# Impossible to tell
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5. (6 points)

Suppose we have a design matrix X and observed response vector Y that we assume are generated from some
true linear model. Specifically, we assume Yi = fθ∗(Xi) + εi, where

• Xi represents the ith row of our design matrix, and Yi represents the ith true response value
• fθ∗(x) represents the underlying true linear model, parametrized by θ∗
• Each εi is a random variable with E[εi] = 0 and Var[εi] = σ2

We want to use a linear model Ŷ = Xθ to fit our data.

Assume that X and Y refer to our entire dataset. After performing a train-test split, we use squared loss and L2

regularization with a positive regularization hyperparameter λ (i.e. ridge regression) to determine our parameter
estimate θ̂, using just our training data.

For each of following questions, select all options that are true.

(a) (2 pt) Which of following quantities are fixed in our true model to generate X and Y?

� fθ∗(x)

2 ε

� σ2

2 θ̂

� θ∗

2 λ

2 None of the above

(b) (2 pt) As we increase λ, our estimated parameter θ̂ changes. What other values also change as we increase
λ?

2 ε

2 σ2

2 θ∗

� Model bias

� Model variance

� Training error

� Test error

2 None of the above
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(c) (2 pt) In the bias-variance decomposition, our model’s risk was defined as E[(Y − fθ̂(x))2].

Which of the following is equal to E[Y − fθ̂(x)]?

# 0

 The negative of model bias

# Model bias

# Model bias squared

# Model variance

# Model standard deviation

# Observation variance

# None of the above
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6. (14 points)

Throughout this question, we are dealing with pandas DataFrame and Series objects. All code for this question,
where applicable, must be written in Python. You may assume that pandas has been imported as pd.

The following DataFrame consoles contains the names of all major video game consoles. The name column is
the primary key of the table. The type column contains the console type, which can only take on the values
handheld and home. The sales column indicates the number of units sold in millions (rounded to the nearest
million). The year column indicates the release year of the console. The data in the Generation, Sales, Year
columns are all stored as int. All data come from Wikipedia, and the first six rows are shown below.

name generation manufacturer type year sales

Playstation 2 6 Sony home 2000 155
Xbox 360 7 Microsoft home 2005 84

Nintendo DS 7 Nintendo handheld 2004 154
Atari 2600 2 Atari home 1977 30
Dreamcast 6 Sega home 1998 9

Playstation 4 8 Sony home 2013 110

(a) (2 pt) Which of the following lines of code correctly finds the names of all sixth generation consoles that
were released before the year 2000?

� consoles[(consoles['generation'] == 6) & (consoles['year'] < 2000)]['name']

2 consoles[consoles['generation'] == 6].loc[:2000, 'name']

2 consoles[consoles['year'] < 2000].groupby('generation').loc[6]['name']

2 consoles[consoles['year'] < 2000].groupby('generation').sum().loc[6]['name']

2 None of the above

(b) (2 pt) Which of the following lines of code correctly finds the number of seventh generation consoles?

� consoles[consoles['generation'] == 7].shape[0]

� consoles.groupby('generation').size().loc[7]

2 consoles.groupby('generation').size().iloc[7]

2 consoles.groupby('name')['generation'].count().loc[7]

2 None of the above

(c) (2 pt) Fill in the blank to find the latest generation that company participated in. Write Pandas code.
Your code should return only the latest generation.

latest_gen = consoles[_________]["generation"].max()

latest_gen = consoles[consoles["manufacturer"] == company]["generation"].max()
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(d) (4 pt) Create a DataFrame containing data only for those consoles whose manufacturers have sold at least
10 million units of each of their consoles. Write Pandas code. The resulting DataFrame must have the
same structure and format as consoles. You may only use one line of code. The resulting DataFrame
should be assigned to the variable df.

df = consoles.groupby("manufacturer").filter(lambda x: min(x["sales"]) >= 10)

(e) (4 pt) Find the best-selling home console and the best-selling handheld console of all time. Write Pandas
code. The result can have any number of columns, but it must only have two rows corresponding to the
best-selling home console and the best-selling handheld console. Assume that are no ties. You may only
use one line of code. The resulting DataFrame must be assigned to the variable best_selling.

best_selling = consoles.sort_values("sales").groupby("type").last()
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7. (4 points)

Let us consider the mean nearest squared error for a dataset and regression line, which is calculated as the mean
of the squared distances from each observation to the nearest point on our regression line.

(a) (1 pt) The mean nearest squared error will be ________ the mean squared error for any dataset.
Assume that both the mean squared error and the slope of the regression line are not zero.

 less than

# equal to

# greater than

# not enough information

(b) (1 pt) The mean nearest squared error will be _______ the mean absolute error for any dataset.
Again, assume that both the mean absolute error and the slope of the regression line are not zero.

# less than

# equal to

# greater than

 not enough information

(c) (2 pt) Kevin is trying to fit a simple linear regression model ŷ = θ0+θ1x on a dataset with 900 observations.

After determining θ̂0 and θ̂1 by minimizing mean squared error, Kevin found the following:

• For 250 inputs, his predicted value ŷ was 1 more than the actual value y.
• For another 500 inputs, his predicted value ŷ was 0.5 less than the actual value y.
• All other points were predicted perfectly.

Calculate the mean squared error of Kevin’s model. Select the closest answer. (Note that this question
is not asking about mean nearest squared error.)

# 0

# 0.25

# 0.35

 0.42

# 0.55

# 1
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8. (5 points)

(a) (1 pt) Suppose that during the process of finding the SVD of our centered design matrix X, we lose
information of the Σ matrix. We still have X, U , and V T . Can we still find our data’s principal components?

 Yes

# No

(b) (2 pt) Let ~u1 be the first column and let ~u2 be the second column of the matrix U given from the SVD.
Which of the following combinations of values of ~u1 and ~u2 are not valid?

2 ~u1 =
[
1 0 0 0 0 0

]T
, ~u2 =

[
0 0 1 0 0 0

]T
2 ~u1 =

[
1 0 0 0 0 0

]T
, ~u2 =

[
0 1 0 0 0 0

]T
� ~u1 =

[
1
2

1
2 0 0 0 0

]T
, ~u2 =

[
1
2 − 1

2 0 0 0 0
]T

� ~u1 =
[
1 0 0 0 0 0

]T
, ~u2 =

[
1
2

1
2 0 0 0 0

]T
2 ~u1 =

[
0.8 −0.6 0 0 0 0

]T
, ~u2 =

[
0.6 0.8 0 0 0 0

]T
2 None of the above

(c) (2 pt) We have some centered design matrix X with 20 observations and 3 features. The variance of the
three features are 125, 20, and 5 respectively. Suppose we use the SVD on X to get U , Σ and V T . Which
of the following is the tightest possible lower bound for σ1 (the largest singular value)?

Note: For example, if x = 5, x ≥ 4 is a tighter lower bound than x ≥ 0, since 4 is closer to 5 than 0 is.

# σ1 ≥ 125

 σ1 ≥ 50

# σ1 ≥ 20

# σ1 ≥ 5

# σ1 ≥ 0
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9. (4 points)

Consider the following table classes, which contains information regarding what classes students took at a
particular high school. The SID uniquely identifies a student, but it is not a primary key in the classes table
because a student can take multiple classes.

CREATE TABLE classes (
sid INT // the SID of a student,
class TEXT // the name of a class,
grade_option TEXT // PNP (pass/no pass) or GRD (letter grade)

);

Here are the first few rows of the classes table:

sid class grade_option

53 AP Biology PNP
53 English 11 GRD
23 AP Calculus GRD
23 AP Biology GRD
23 Spanish 4 PNP
10 AP United States History GRD
10 Physics GRD

(a) (4 pt) AP classes are designated by a class field that starts with ‘AP’. AP classes are worth a maximum
of 5 grade points while all other classes are worth a maximum of 4 grade points. Only classes taken for a
letter grade (GRD) count towards a student’s grade point average (GPA). Fill in the blank in the SQL
query to find the maximum possible GPA each student could have. The output should include the SID
and the maximum possible GPA.

If we assume that the table only contains the 7 rows above, then the output should be:

sid max_gpa

53 4
23 5
10 4.5

SELECT sid, ____________ AS max_gpa
FROM classes
WHERE grade_option = 'GRD'
GROUP BY sid;

AVG(CASE WHEN class LIKE 'AP%' THEN 5.0 ELSE 4.0 END)
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10. (7 points)

(a) (2 pt) Which of the following are true regarding fact and dimension tables?

� Primary and foreign keys are useful in determining the relationship between fact and dimension tables.

2 The primary key for fact tables usually only consist of a single column.

� Joins can help us combine information from fact and dimension tables.

2 Looking at a fact table alone tells us all the information we need regarding our data.

2 None of the above

(b) (1 pt) In this question, assume that we are using the logistic regression model ŷ = σ(xT θ).

Suppose we want to modify cross-entropy loss to penalize predictions for observations that are truly positive
twice as much as we penalize predictions for observations that are truly negative. Which of the following
loss functions could we use? Recall that the average cross-entropy loss is:

R(θ) = − 1

n

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

# R(θ) = − 2
n

∑n
i=1 (yi log(ŷi) + (1− yi) log(1− ŷi))

 R(θ) = − 1
n

∑n
i=1 (2yi log(ŷi) + (1− yi) log(1− ŷi))

# R(θ) = − 1
n

∑n
i=1 (yi log(ŷi) + 2(1− yi) log(1− ŷi))

# R(θ) = − 1
n

∑n
i=1 ((yi + 2) log(ŷi) + (1− yi) log(1− ŷi))

(c) (2 pt) Which of these models is linear? Select all that apply.

� fθ(x) = θ0 + θ1x
n

2 fθ(x) = θ0 + θ1x
θ2

� fθ(x) = θ2x1x2 + θ0x2x3 + θ1x
x2
1

� fθ(x) = θ1x
2
1 + θ1x

2
2 + θ1x

2
3

� fθ(x) = θ0 +
∑s
i=1 θi cos(ix)

2 fθ(x) = θ0 +
∑s
i=1 i cos(θix)

2 None of the above
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(d) (2 pt) Suppose we want to use the bootstrap to find a percentile confidence interval for one of the
parameters in a model. Which of the following statements are true? Select all that apply.

2 For a particular 90% confidence interval, there is a 90% chance that the true population parameter is
inside the interval.

� Roughly 90% of several 90% confidence intervals created using the same process should contain the
true population parameter.

2 Exactly 90% of several 90% confidence intervals created using the same process should contain the true
population parameter.

2 A 90% confidence interval is generally wider than a 95% confidence interval.

� A 90% confidence interval is generally narrower than a 95% confidence interval.

2 The bootstrapped sampling distribution of an estimator must be normal in order for us to create a
bootstrap percentile confidence interval.

2 None of the above
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11. (5 points)

Fill in the blanks below to complete the implementation of create_folds, a function that takes in a value k
and returns train_folds and valid_folds that we can use for cross-validation. Assume that X is a design
matrix already defined in our notebook environment.

# Helper function to create k folds
def create_folds(k):

fold_size = ____(i)____
shuffled_idx = np.random.permutation(X.shape[0])
train_folds = []
valid_folds = []
for i in range(k):

train_idx = np.append(shuffled_idx[0 : i*fold_size], shuffled_idx[(i + 1)*fold_size :])
valid_idx = ____(ii)____
train_folds.append(train_idx)
valid_folds.append(valid_idx)

return train_folds, valid_folds

(a) (1 pt) What goes in blank (i)?

# X.shape[0]

# k

# X.shape[1] // k

 X.shape[0] // k

(b) (2 pt) What goes in blank (ii)?

# np.append(shuffled_idx[i*fold_size], shuffled_idx[(i + 1)*fold_size])

 shuffled_idx[i*fold_size : (i + 1)*fold_size]

# i*fold_size : (i + 1)*fold_size

# shuffled_idx - train_idx



Exam generated for <EMAILADDRESS> 22

(c) (2 pt) Now, fill in the blank to complete the implementation of k_fold_ridge_CV, which takes in a value
k and a list of lambda_choices, and returns the value in lambda_choices that minimizes cross-validation
RMSE for a ridge regression model, trained on X and y.

lambda_choices = [1000, 100, 10, 1, 0.1, 0.01, 0.001]

def k_fold_ridge_CV(k, lambda_choices):
train_folds, valid_folds = create_folds(k)
all_errors = []

for lamb in lambda_choices:
lambda_errors = []
for train_idx, valid_idx in zip(train_folds, valid_folds):

model = lm.Ridge(alpha = lamb)
model.fit(X[train_idx], y[train_idx])
rmse = ____(iii)____
lambda_errors.append(rmse)

all_errors.append(np.mean(lambda_errors))

return lambda_choices[np.argmin(errors)]

What goes in blank (iii)?

 np.sqrt(np.mean((model.predict(X[valid_idx]) - y[valid_idx])**2))

# np.mean((model.predict(X[valid_idx]) - y[valid_idx])**2)

# np.sqrt(np.mean((model.predict(X[train_idx]) - y[train_idx])**2))

# np.sqrt(np.mean((y[valid_idx] - X[valid_idx] @ lm.coef_ - lm.intercept_)**2) + lamb *
np.sum(lm.coef_**2))
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12. (4 points)

(a) (4 pt) The McDonald’s ordering machine is broken! Every time a customer orders, the machine adds
gibberish that make it harder to read and sometimes adds fake orders, causing long wait times. A real
order is a string that starts with the number of items followed by the item name, and the order ends at the
first “?”. Each order only has one quantity and one item name (an order cannot have multiple different
items).

Below, write a regular expression to extract valid orders. Assume customers cannot order more than 99
items in one order, and orders that are single digits show up as a single number (e.g. 9 instead of 09). If a
customer tries to order more than 99 items, your regular expression should only capture the last two digits.
Also, don’t hardcode the answer or McDonald’s will fire you and you will receive no credit.

Your answer must be a regular expression.

orders = ['9burgers?', '40fries?fhw?', 'sevensprites?', '0000009nuggets?mj1i2', \
'sofjsd35milkshakes?1quarterpounder?', '534salads?burgerkingisking']
pattern = r'__________________'

>>> for order in orders:
... print(re.findall(pattern, order))
['9burgers']
['40fries']
[]
['9nuggets']
['35milkshakes']
['34salads']

([1-9][0-9]{,1}[a-zA-Z]+)\?\w*
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0 Statement of Academic Integrity [1 Pt]

Please COPY, SIGN, and DATE the following statement on your exam page. You must do this
even if you are writing the exam on blank sheets of paper. Note that this question is worth a
point.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I
will neither give nor receive assistance while taking this exam. I understand that I must write this
exam on paper.

Write down the time at which you are taking this exam. You should choose from the following
options:

• Thursday, 7:00-8:45PM PDT (main exam)

• Thursday, 7:00-9:30PM PDT (DSP 150%)

• Thursday, 7:00-10:15PM PDT (DSP 200%)

• Friday, 8:00-9:45AM PDT (alternate)

• Friday, 8:00-10:30AM PDT (alternate DSP 150%)

• Friday, 8:00-11:15AM PDT (alternate DSP 200%)

• Other

You must submit the exam to Gradescope by the ending time listed above.
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1 Great Expectations [8 Pts]

1. Suppose you roll a fair six-sided die 10 times.

• Let X1 be the number of 1s you see in 10 rolls.
• Let X2 be the number of 3s or 5s you see in 10 rolls.
• Let X3 be the number of even numbers you see in 10 rolls.

For example, [1, 3, 5, 5, 5, 1, 2, 4, 6, 2] is one of many possible sequences when X1 = 2,
X2 = 4, and X3 = 4.
(a) [2 Pts] Determine E[X2]. Simplify your answer.

Solution: When rolling a single die, the probability of any one outcome in par-
ticular is 1

6
, which is the expected number of occurrences for a single outcome

in a single roll. That means the expected number of occurrences for a single
outcome in 10 rolls is, by the linearity of expectation, 10 · 1

6
.

Then,

E[X2] = 2 · 10 · 1

6
=

10

3

(b) [2 Pts] Determine E[X1 +X2 +X3]. Simplify your answer.

Solution: Since we either see a 1, a 3 or 5, or a 2, 4, or 6, the sum of X1, X2,
and X3 must be 10, and hence E[X1 +X2 +X3] = 10.

(c) [2 Pts] Are X1 and X2 independent? Answer yes or no, and justify your answer.
(Do not say “yes, because X1 depends on X2” or “no, because X1 doesn’t depend on
X2”; credit will only be given to rigorous answers.)

Solution: No. If X1 = 10, we know that X2 = 0. Hence, knowing something
about one random variable tells us something about the other, meaning they are
not independent.

(d) [2 Pts] Find P (X1 = 2, X2 = 3, X3 = 5). You may leave your answer as an
unsimplified fraction.

Solution: We can use the multinomial formula.

P (X1 = 2, X2 = 3, X3 = 5) =
10!

2!3!5!
·
(1

6

)2 · (1

3

)3 · (1

2

)5
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2 I Scream for Ice Cream! [10 Pts]

2. The local ice cream shop has just hired you as a data scientist. Your first task is to build a
simple linear model, ŷ = θ0 +θ1x, where you will predict the total amount of sales (in dollars)
using the daily high temperature (in degrees Celsius). Given their data set, you compute the
following summary statistics:

r = 0.7 xmin = 15◦C xmax = 38◦C x̄ = 20◦C σx = 2◦C
n = 50 ymin = $0 ymax = $98.50 ȳ = $7.50 σy = $1

To fit your model, you decide to use squared loss.

(a) [2 Pts] Find the optimal parameters θ̂0 and θ̂1. Simplify your answer.

Solution:
θ̂1 = r(

σy
σx

) = 0.7(
1

2
) = 0.35

θ̂0 = ȳ − θ̂1x̄ = 7.50− (0.35)(20) = 0.5

(b) [2 Pts] One observation in the dataset had a daily high temperature of 30◦C, and had a
total sales amount of $19.00. What is the residual for this observation?

Solution:
ŷ = 0.5 + 0.35(30) = $11.00

y − ŷ = $19.00− $11.00 = $8.00

(c) [3 Pts] What is the variance of the fitted values in your regression model?

Solution: In SLR, r2 = R2, and R2 is the ratio of the variance of the fitted values
and true response.

r2 =
σ2
ŷ

12
=⇒ σ2

ŷ = 0.72 · 12 = 0.49

(d) [3 Pts] What is the mean squared error of your regression model? Hint: You may consider
using the fact that

∑n
i=1(yi − ȳ)2 =

∑n
i=1(yi − ŷi)2 +

∑n
i=1(ŷi − ȳ)2.

Solution: Rearranging the hint gives that MSE = variance of y−variance of ŷ. Sub-
stituting in the values from the table and the previous question give MSE = 1−0.49 =
0.51.
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3 More Regression? Really? [4 Pts]

3. In both parts of this question, assume that we are fitting a linear model Ŷ = Xθ by minimizing
mean squared error without regularization. Also assume that our design matrix X has n rows
and p+ 1 columns.

(a) [2 Pts] Let M be the MSE of our ordinary least squares regression model. Let S = ||e||2,
i.e. let S be the L2 norm of the residual vector of our model.
Write a mathematical expression that expresses M in terms of S. Hint: You may use n
and/or p in your answer.

Solution:
Note, S =

√∑n
i=1 e

2
i , and M = 1

n

∑n
i=1 e

2
i . Hence:

M =
S2

n

(b) [2 Pts] Suppose our design matrix is square (i.e. n = p + 1) and full rank. What is the
MSE of our resulting linear model? Select from one of the following three answers, and
explain your choice.

• Some number less than 0
• 0
• Some number greater than 0

Solution: The MSE of our resulting linear model is 0. θ̂ is the solution to a well-
defined system of n equations with precisely n unknowns.
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4 Please Be Mine [6 Pts]

4. The Data 100 Mining Company is ethically and sustainably mining mineral ores. They record
the mass, volume, and density of the n ores they mine in Table A, which consists only of those
three columns. Note that density can be expressed as a combination of mass and volume using
the formula density = mass · volume−1.

For each of the following parts, justify your answer. Answers without sufficient justifica-
tion will not receive full credit.
(a) [1 Pt] What is the rank of Table A?

Solution: 3. While density is a combination of mass and volume, it is not a linear
combination and so including this information increases the rank from 2 to 3.

(b) [2 Pts] In some new table, Table B, they record the rarity of the n ores as “Abundant”,
“Common”, “Scarce”, or “Rare”, after which they one-hot encode the rarity feature. (To
be clear, there are only 4 columns in Table B.) The company then merges Tables A and
B to form Table C. What is the rank of Table C? You may assume there are no issues in
merging Tables A and B.

Solution: There is no intercept term included when we one-hot encode the rarity, so
the rank of Table B is simply the number of different values the categorical variable
can take, i.e. 4. We already know that Table A has rank 3. Since the columns in each
table are linearly independent with respect to the other, the resulting rank of Table C
is 3 + 4 = 7.

(c) [3 Pts] They then record whether the ore is magnetic or not, one hot-encode this feature,
and add it to Table C along with an intercept term to form Table D. What is the rank of
Table D? As before, you may assume there are no issues with merging the tables.

Solution: The rank of the one hot encoded matrix for magnetism is 2. When we add
an intercept term, it’s still 2, since the one hot encoded columns sum to 1 anyway.
However when we combine this with Table C, one of the latter’s rarity OHE columns
becomes redundant since we’re including an intercept term, so the rank of Table D is
7 + 2 - 1 = 8.
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5 GPA Descent [7 Pts]

5. Consider the following non-linear model with two parameters:

fθ(x) = θ0 · 0.5 + θ0 · θ1 · x1 + sin(θ1) · x2

For some nonsensical reason, we decide to use the residuals of our model as the loss function.
That is, the loss for a single observation is

L(θ) = yi − fθ(xi)

We want to use gradient descent to determine the optimal model parameters, θ̂0 and θ̂1.

(a) [3 Pts] Suppose we have just one observation in our training data, (x1 = 1, x2 = 2, y =
4). Assume that we set the learning rate α to 1.

An incomplete version of the gradient descent update equation for θ is shown below. θ(t)0

and θ(t)1 denote the guesses for θ0 and θ1 at timestep t, respectively.[
θ
(t+1)
0

θ
(t+1)
1

]
=

[
θ
(t)
0

θ
(t)
1

]
−
[
A
B

]
Express both A and B in terms of θ(t)0 , θ(t)1 , and any necessary constants.

Solution:
Note, our empirical risk here is R(θ) = 4 − θ0 · 0.5 − θ0 · θ1 − sin(θ1) · 2. Taking
partial derivatives with respect to θ0 and θ1 yield A and B respectively:

A = −0.5− θ(t)1

B = −θ(t)0 − 2 cos(θ
(t)
1 )

(b) [2 Pts] Assume we initialize both θ(0)0 and θ(0)1 to 0. Determine θ(1)0 and θ(1)1 (i.e. the
guesses for θ0 and θ1 after one iteration of gradient descent).

Solution: From the above, we have

θ
(1)
0 = θ

(0)
0 − (−0.5− θ(0)1 ) = θ

(0)
0 + θ

(0)
1 + 0.5 = 0 + 0 + 0.5 = 0.5

θ
(1)
1 = θ

(0)
1 − (−θ(0)0 − 2 cos(θ

(0)
1 )) = θ

(0)
0 + θ

(0)
1 + 2 cos(θ

(0)
1 ) = 0 + 0 + 2 cos(0) = 2

(c) [2 Pts] What happens to θ
(t)
0 as t → ∞ (i.e. as we run more and more iterations of

gradient descent)?
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Solution: θ(t)0 approaches infinity. To see this, we can look at the update equations
for θ(t)0 and θ(t)1 :

θ
(t+1)
0 = θ

(t)
0 + θ

(t)
1 + 0.5

θ
(t+1)
1 = θ

(t)
0 + θ

(t)
1 + 2 cos(θ

(t)
1 )

Loosely speaking, both θ(t)0 and θ(t)1 double on each iteration, and so they both increase
towards positive infinity as we increase our number of iterations t.



Data 100 Page 9 of 16 Initials:

6 Wall Street Logistics [18 Pts]

6. You have been tasked with performing an analysis on customers of a credit card company.
Specifically, you will be developing a classification model to classify whether or not specific
customers will fail to pay their next credit card payment. You decide to approach this problem
with a logistic regression classifier. The first 5 rows of our data are shown below.

The numerical data in the education and marriage columns correspond to the following cate-
gories:

education: 1 - graduate school; 2 - university; 3 - high school; 4 - other
marriage: 1 - married; 2 - single; 3 - other

Our response variable, labeled as failed payment, can have values of 0 (makes their next pay-
ment) or 1 (fails to make their next payment).

You use the logistic regression model ŷ = P (Y = 1|x) = σ(xT θ) . Assume that the following
value of θ̂ minimizes un-regularized mean cross-entropy loss for this data set:

θ̂ = [−1.30, 0.08,−0.08, 0.001]T

Here, -1.30 is the intercept term, 0.08 corresponds to education, -0.08 corresponds to
marriage status, and 0.001 corresponds to age.

(a) [2 Pts] Consider a customer who is 50 years old, married, and only has a high school
education. Compute the chance that they fail to pay their next credit card payment. Give
your answer as a probability in terms of σ.

Solution:

P (Y = 1|education = 3,married = 1,age = 50)

= σ(−1.30 + (3 · 0.08) + (1 · −0.08) + (50 · 0.001)) = σ(−1.09)
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(b) [2 Pts] This specific customer fortunately made their next payment on time! Compute
the cross-entropy loss of the prediction in part a. Leave your answers in terms of σ.

Solution:
L = −(0 · log(σ(−1.09)))− (1 · log(1− σ(−1.09)))

= − log(1− σ(−1.09))

(c) [2 Pts] How does a one-unit increase in age impact the log-odds of making a failed
payment? Give a precise, numerical answer, not just “it increases” or “it decreases.”

Solution: A 1 unit increase in age increases the log-odds of a failed payment by
0.001.

(d) [3 Pts] Let’s consider all customers who are married and whose highest level of education
is high school. What is the minimum age of such a customer, such that they more likely
to fail their next payment than make their next payment, under our logistic regression
model?

Solution: Here, we fix marriage to be 1 and education to be 3.

P (Y = 1|age) = σ(−1.30 + (3 · 0.08) + (1 · −0.08) + (50 · age))

= σ(−1.14 + 0.001 · age)

We want to solve for the value of age such that the above probability is at least 1
2
.

Note, since σ(0) = 1
2
, we can equivalently set the argument of the logistic function to

0, and solve for the resulting age.

−1.14 + 0.001 · age ≥ 0

age ≥ 1.14

0.001
= 1140

The age we are looking for, then, is 1140 years old.

(e) [3 Pts] Suppose you choose a threshold T = 0.8. The decision boundary of the resulting
classifier is of the form

A · education +B · marriage + C · age +D = 0

What are the values of A, B, C, and D? Your answers may contain a log, but should not
contain σ. Show your work.

Solution:
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P (Y = 1|education,married,age)

= σ(−1.30 + 0.08 · education− 0.08 · marriage + 0.001 · age)

Our decision boundary results from setting the above probability equal to the thresh-
old, 0.8.

σ(−1.30 + 0.08 · education− 0.08 · marriage + 0.001 · age) = 0.8

We now need to rearrange, to get a decision boundary of the form the question is ask-
ing for. This involves applying the inverse logistic function to both sides of the equa-
tion. We know that σ−1(t) = log( t

1−t) from lecture, and so σ−1(0.8) = log(0.8
0.2

) =
log(4). Then:

−1.30 + 0.08 · education− 0.08 · marriage + 0.001 · age = log(4)

0.08 · education− 0.08 · marriage + 0.001 · age− 1.30− log(4) = 0

Hence, A = 0.08, B = −0.08, C = 0.001, and D = −1.30− log(4).

(f) [2 Pts] Suppose with the above threshold you achieve a training accuracy of 100%. Can
you conclude your training data was linearly separable in the feature space? Answer yes
or no, and explain in one sentence.

Solution:
Yes. If the above decision boundary achieved 100% training accuracy, it means that
all observations where Y = 1 were on one side of the boundary, and all where Y = 0
were on the other side of the boundary. This is the definition of linear separability.

(g) [2 Pts] To further your analysis, you also create a random forest classifier. To compare
classifiers you generate a ROC curve for both models. Which of the two models would
you choose to use, based on the ROC curve? Explain in one sentence. (Do not worry
about the implementation details of how ROC curves are created for random forests.)
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Solution: The random forest model should be chosen as it has a larger AUC.

(h) [2 Pts] For whatever reason, we decide to multiply the education feature by 4 and
age feature by 0.5 in our data. What is the new value of θ̂ that minimizes un-regularized
mean cross-entropy loss?
If you don’t believe it’s possible to tell, say so. For your convenience, the value of θ̂
that minimized un-regularized mean cross-entropy loss on the original data was θ̂ =
[−1.30, 0.08,−0.08, 0.001]T ; here, -1.30 is the intercept term, 0.08 corresponds to education,
-0.08 corresponds to marriage status, and 0.001 corresponds to age.
Note: This question is independent of parts e and f, i.e. do not assume that we achieved a
training accuracy of 100%.

Solution: We can multiply the coefficients for education and age by 1
4

and 2,
respectively. This results in our model making the same predictions, and hence the
cross-entropy loss is the same.

θ̂ = [−1.30, 0.02,−0.08, 0.002]T
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7 Pacific Coast Academy [15 Pts]

7. Suppose you have some design matrix D with 51 rows and 5 columns. Below are the first 3
rows of D:

3 3 12 5 1
3 4 8 2 1
1 2 12 7 2

You are also given the following information regarding the mean and variance of each of the
5 columns:

Column 1 Column 2 Column 3 Column 4 Column 5
Mean 2 3 10 5 1

Variance 0.3 0.3 ? 0.3 0.3

You compute the singular value decomposition of D using the following Python code:

X = D - np.mean(D, axis=0) # X is the centered version of D
u, s, vt = np.linalg.svd(X, full_matrices=False)

The value of s that results is array([9, 4, 2, 1, 0]).

For all parts of this question, you must justify your answer for full credit. If the answer
to any part cannot be found with the information given, write ”not enough information.”
(a) [1 Pt] What is the rank of matrix D?

Solution: 4, since there are 4 non-zero singular values.

(b) [2 Pts] What is the variance accounted for by the second principal component? Your
answer should not contain any variables.

Solution: 42

51

(c) [2 Pts] We want to choose the first k principal components, such that at least 95% of the
variation in D is retained. What is the smallest possible value of k that we can choose?

Solution: 2

(d) [3 Pts] Unfortunately, the data you received got corrupted, so they do not include the
variance of column 3. Given all of the information above, what is the variance of column
3?
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Solution: Note that the total variance calculated from the singular values is:

92 + 42 + 22 + 12 + 02

51
=

102

51
= 2

The other 4 columns each have a variance of 0.3, which means that column 3 has a
variance of 2− 0.3 · 4 = 2− 1.2 = 0.8.

(e) [3 Pts] You are now given that the output of vt[2] is array([0.8, 0.6, 0, 0,
0]). Note that this is the third row of V T because of 0-indexing. Given this information,
what is the output of u[0, 2] (the first entry in the third column of U )? Hint: Recall
that X~vi = σi~ui.

Solution: The first entry in X~v3 is the dot product between the first row of X and ~v3.
After mean-centering, the first row of X is

[
1 0 2 0 0

]T . Taking the dot product
of this and ~v3, we get 0.8. Since σ3 = 2 and X~v3 = σ3~u3 we know that the first entry
of ~u3 is 0.4.

(f) [2 Pts] What is the output of np.mean(u[:, 0])?

Solution: Recall from discussion 13 that X~v1 has a mean of 0, which means that
σ1~u1 has a mean of 0. Since σ1 = 9 6= 0, we know that ~u1 also has a mean of 0.

(g) [2 Pts] Which of the following four scatter plots depicts PC 2 plotted against PC 1? There
is only one correct answer, and one of the four answers is correct.
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Solution: Plot B. The ratio of the variances of PC 1 to PC 2 is 92

42
= 81

16
≈ 5, so the x

axis needs to be roughly 5 times more spread out than the y axis.
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8 Computational and Inferential Thinking [6 Pts]

8. Suppose we are trying to estimate the true tip percentage θ∗ given to waiters and waitresses at
restaurants. Instead of collecting data and fitting a model, we use another approach.

We use a random number generator to select an integer between 1 and 20 (inclusive of both
endpoints), uniformly at random. We repeat this process n times, giving us a total of n num-
bers. You may assume that each selection is independent.

Our estimator θ̂ is the number of prime numbers in our list of n numbers. For reference, there
are 8 prime numbers between 1 and 20, inclusive.

Suppose θ∗ = 16.

(a) [3 Pts] What is the bias of the estimator θ̂? Hint: The only variable your answer should
contain is n.

Solution:
θ̂ follows the binomial (n, 8

20
) distribution. The bias of our estimator is E[θ̂] − θ∗ =

8
20
n− 16.

(b) [1 Pt] What should n be so that θ̂ is an unbiased estimator of θ∗?

Solution: An unbiased estimator is one where E[θ̂] = θ∗. Setting 8
20
n = 16 gives

n = 40.

(c) [2 Pts] What is the variance of the estimator θ̂ when using the value of n from part b?

Solution: np(1− p) = 40 · 8
20
· 12
20

= 9.6


