Fall 2025 Data C100/C200 Midterm 2 Reference Sheet
Pandas

Suppose df is a DataFrame; s is a Series. import pandas as pd

Function Description

df.shape Returns a tuple containing the number of rows and columns, in that order

df.index Returns the index (row labels) of df as an Index object

df[col] Returns the column labeled col from df as a Series

df.index[1i] Returns the row label at position i from df's index

df[[coll, col2]] Returns a DataFrame containing the columns labeled col1 and col2

s.idxmax() Returns the index label of the first occurrence of the maximum value in Series s
s.astype(dtype) Returns a Series casted to the specified type dtype

s.loc[rows] / df.loc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their index values
s.iloc[rows] / df.iloc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their positions
s.isnull() / df.isnull() Returns boolean Series/DataFrame identifying missing values

s.fillna(value) / df.fillna(value) Returns a Series/DataFrame where missing values are replaced by value

s.isin(values) / df.isin(values) Returns a Series/DataFrame of booleans indicating if each element is in values.
df.drop(labels, axis) Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)
df.rename(index=None, columns=None) Returns a DataFrame with renamed columns from a dictionary index and/or columns
df.sort_values(by, ascending=True) Returns a DataFrame where rows are sorted by the values in columns by
s.sort_values(ascending=True) Returns a sorted Series

s.unique() Returns a NumPy array of the unique values of s in the order that they appear
s.value_counts() Returns the number of times each unique value appears in a Series

pd.merge(left, right, how='inner', Returns a DataFrame joining left and right on columns labeled col1 and col2; the join is of type inner

left_on=coll, right_on=col2)

left.merge(right, left on=coll, Returns a DataFrame joining left and right on columns labeled col1 and col2
right_on=col2)

df.pivot_table(values=None, Returns a DataFrame pivot table where columns are unique values from columns (column name or list), and
index=None, columns=None, rows are unique values from index (column name or list); cells are collected values using aggfunc. If values is
aggfunc="mean', fill_value=None) not provided, cells are collected for each remaining column with multi-level column indexing.
df.set_index(col) Returns a DataFrame that uses the values in the column labeled col as the row index

df.reset_index() Returns a DataFrame that has row index 0, 1, etc,, and adds the current index as a column

Let grouped = df.groupby(by) where by can be a column label or a list of labels

Function Description
grouped. count() Return a DataFrame containing the size of each group, excluding missing values
grouped.size() Return a Series containing size of each group, including missing values

grouped.mean()/.min()/.max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values
grouped.head(n)/.tail(n) Return a Series/DataFrame containing first/last n entries of each group for each column, excluding missing values

grouped.filter(f) Filters or aggregates using the given function £
grouped.agg(f)

Function Description
s.str.len() Returns a Series containing length of each string
s.str[a:b] Returns a Series where each element is a slice of the corresponding string indexed from a (inclusive, optional)

to b (non-inclusive, optional)



Function Description

s.str.lower()/s.str.upper() Returns a Series of lowercase/uppercase versions of each string

s.str.replace(pat, repl, regex=False) Returns a Series that replaces occurences of substrings matching pat with string repl. When regex=False, pat

is treated as a literal string; when regex=True, pat is treated as a RegEx pattern.

s.str.contains(pat) Returns a boolean Series indicating if a substring matching the regex pat is contained in each string

s.str.extract(pat) Returns a DataFrame of the first subsequence of each string that matches the regex pat. If pat contains one

group, then only the substring matching the group is extracted

s.str.split(pat=" ") Splits the strings in s at the delimiter pat (defaults to a whitespace). Returns a Series of lists, where each list

contains strings of the characters before and after the split.

Visualization

Matplotlib: x and y are sequences of values. import matplotlib.pyplot as plt

Function

plt.plot(x, y)
plt.scatter(x, y)
plt.hist(x, bins=None)

plt.bar(x, height)

Description

Creates a line plot of x against y
Creates a scatter plot of x against y
Creates a histogram of x; bins can be an integer or a sequence

Creates a bar plot of categories x and corresponding heights height

Seaborn: x and y are column names in a DataFrame data. import seaborn as sns

Function

sns.

sns.

sns

sns.

sns

sns.

sns.

sns.

countplot(data=None, x=None)

histplot(data=None, x=None, stat='count', kde=False)

.displot(data=None, x=None, kind='hist', rug=False)

rugplot(data=None, x=None)

.boxplot(data=None, x=None, y=None)

.violinplot(data=None, x=None, y=None)

scatterplot(data=None, x=None, y=None)

Implot(data=None, x=None, y=None, fit_reg=True)

jointplot(data=None, x=None, y=None, kind='scatter')

Regular Expressions

Description
Create a barplot of value counts of variable x from data

Creates a histogram of x from data, where bin statistics stat is one of 'count’,
'frequency', 'probability’, 'percent’, and 'density’; optionally overlay a kernel
density estimator. displot is similar but can optionally overlay a rug plot and/or a KDE
plot

Adds a rug plot on the x-axis of variable x from data

Create a boxplot of a numeric feature (e.g., y), optionally factoring by a category (e.g., x),
from data. violinplot is similar but also draws a kernel density estimator of the numeric
feature

Create a scatterplot of x versus y from data

Create a scatterplot of x versus y from data, and by default overlay a least-squares
regression line

Combine a bivariate scatterplot of x versus y from data, with univariate density plots of
each variable overlaid on the axes; kind determines the visualization type for the
distribution plot, can be scatter, kde or hist

Operator Description Operator Description

. Matches any character except \n * Matches preceding character/group zero or more times

\ Escapes metacharacters ? Matches preceding character/group zero or one times

| Matches expression on either side of expression; has lowest  + Matches preceding character/group one or more times
priority of any operator

\d, \w, \s Predefined character group of digits (0-9), alphanumerics (a- *, $ Matches the beginning and end of the line, respectively
z, A-Z, 0-9, and underscore), or whitespace, respectively

\D, \W, \S Inverse sets of \d, \w, \s, respectively () Capturing group used to create a sub-expression

{m} Matches preceding character/group exactly m times [ Character class used to match any of the specified characters

or range (e.g. [abcde] is equivalent to [a-e])



Operator Description Operator Description

{m, n} Matches preceding character/group at least m times and at [~ 1 Invert character class; e.g. [*a-c] matches all characters
most n times. If either m or n are omitted, set lower/upper except a, b, c
bounds to 0 and o, respectively

Modified lecture example for capture groups:
import re

lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"'
re.findall(r'\[\d+\/ (\w+)\/\d+:\d+:\d+:\d+ .+\]', lines) # returns ['Jan']

Function Description
re.match(pattern, string) Returns a match if zero or more characters at beginning of string matches pattern, else None
re.search(pattern, string) Returns a match if zero or more characters anywhere in string matches pattern, else None
re.findall(pattern, string) Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)
re.sub(pattern, repl, string) Returns string after replacing all occurrences of pattern with repl
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Scikit-Learn

Package: sklearn.linear_model

Linear Logistic
Regression Regression Function(s) Description

v - LinearRegression(fit_intercept=True) Returns an ordinary least squares Linear Regression model.



Package: sklearn.linear_model

Linear Logistic
Regression Regression Function(s) Description
- v LogisticRegression( fit_intercept=True, Returns an ordinary least squares Linear Regression model. Hyperparameter C
penalty='12", C=1.9) is inverse of regularization parameter, C = 1/A.
v - LassoCV(), RidgeCV() Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model,
respectively, and picks the best model by cross validation.
v v model.fit(X, y) Fits the scikit-learn model to the provided x and y.
v model.predict(X) Returns predictions for the x passed in according to the fitted model.
v model.predict_proba(X) Returns predicted probabilities for X according to the fitted model. If binary
classes, will return probabilities for both class 0 and 1.
N4 N4 model.coef_ Estimated coefficients for the linear model, excluding the intercept.
v v model.intercept_ Bias/intercept term of the linear model. Set to 0.0 if fit_intercept=False.

Package: sklearn.model_selection
Function Description

train_test_split(*arrays, test_size=0.2) Returns two random subsets of each array passed in, with 0.8 of the array in
the first subset and 0.2 in the second subset.
Probability
Let X have a discrete probability distribution P(X = z). X has expectation E[X] = > 2P(X = x) over all possible values z, variance
Var(X) = E[(X — E[X])2] and standard deviation SD(X) = \/\T(X).

Notes Property of Expectation Property of Variance
X is a random variable. ) ) ,

E[X] =) zP(X =) Var(X) = E[(X — E[X])?] = E[X?] — (E[X))
X is a random variable, a,b € R are )
scalars. ElaX +b] = aE[X] +b Var(aX + b) = a*Var(X)
X,Y are random variables.

E[X+Y] =E[X]+E[Y] Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)
X is a Bernoulli random variable that

ElX]=p Var(X) = p(1 - p)

takes the value 1 with probability p,
and 0 otherwise.

Parameter Estimation and Gradient Descent Update Rule
Parameter Estimation

Suppose for each individual with fixed input &, we observe a random response Y = g(z) + ¢, where g is the true relationship and € is random noise with

zero mean and variance o2

For a new individual with fixed input z, define our random prediction Y(a:) based on a model fit to our observed sample (X, Y). The model risk is the
~ ~ N 2 ~
mean squared prediction error between Y and Y (z): E[(Y — Y (2))?] = 0% + (]E[Y(m)} — g(w)) + Var(Y(z)).
Suppose that input z has p features and the true relationship g is linear with parameter § € RP*1. Then Y = f(z) = 6, + Z?;l 0;x; + € and Y = f(;r:)
for an estimate 0 fit to the observed sample (X, Y).
Gradient Descent
For a learning rate o, the gradient update step is:

) = 9 — o V,L(0®, X, Y)

where VgL(ﬁ(t), X, Y) is the partial derivative/gradient of L with respect to 6, evaluated at 6@,



