Fall 2025 Data C100/C200 Midterm 2 Reference Sheet
Pandas

Suppose df is a DataFrame; s is a Series. import pandas as pd

Function Description

df.shape Returns a tuple containing the number of rows and columns, in that order

df.index Returns the index (row labels) of df as an Index object

df[col] Returns the column labeled col from df as a Series

df.index[1i] Returns the row label at position i from df's index

df[[coll, col2]] Returns a DataFrame containing the columns labeled col1 and col2

s.idxmax() Returns the index label of the first occurrence of the maximum value in Series s
s.astype(dtype) Returns a Series casted to the specified type dtype

s.loc[rows] / df.loc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their index values
s.iloc[rows] / df.iloc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their positions
s.isnull() / df.isnull() Returns boolean Series/DataFrame identifying missing values

s.fillna(value) / df.fillna(value) Returns a Series/DataFrame where missing values are replaced by value

s.isin(values) / df.isin(values) Returns a Series/DataFrame of booleans indicating if each element is in values.
df.drop(labels, axis) Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)
df.rename(index=None, columns=None) Returns a DataFrame with renamed columns from a dictionary index and/or columns
df.sort_values(by, ascending=True) Returns a DataFrame where rows are sorted by the values in columns by
s.sort_values(ascending=True) Returns a sorted Series

s.unique() Returns a NumPy array of the unique values of s in the order that they appear
s.value_counts() Returns the number of times each unique value appears in a Series

pd.merge(left, right, how='inner', Returns a DataFrame joining left and right on columns labeled col1 and col2; the join is of type inner

left_on=coll, right_on=col2)

left.merge(right, left on=coll, Returns a DataFrame joining left and right on columns labeled col1 and col2
right_on=col2)

df.pivot_table(values=None, Returns a DataFrame pivot table where columns are unique values from columns (column name or list), and
index=None, columns=None, rows are unique values from index (column name or list); cells are collected values using aggfunc. If values is
aggfunc="mean', fill_value=None) not provided, cells are collected for each remaining column with multi-level column indexing.
df.set_index(col) Returns a DataFrame that uses the values in the column labeled col as the row index

df.reset_index() Returns a DataFrame that has row index 0, 1, etc,, and adds the current index as a column

Let grouped = df.groupby(by) where by can be a column label or a list of labels

Function Description
grouped. count() Return a DataFrame containing the size of each group, excluding missing values
grouped.size() Return a Series containing size of each group, including missing values

grouped.mean()/.min()/.max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values
grouped.head(n)/.tail(n) Return a Series/DataFrame containing first/last n entries of each group for each column, excluding missing values

grouped.filter(f) Filters or aggregates using the given function £
grouped.agg(f)

Function Description
s.str.len() Returns a Series containing length of each string
s.str[a:b] Returns a Series where each element is a slice of the corresponding string indexed from a (inclusive, optional)

to b (non-inclusive, optional)

Function Description

s.str.lower()/s.str.upper() Returns a Series of lowercase/uppercase versions of each string

s.str.replace(pat, repl, regex=False) Returns a Series that replaces occurences of substrings matching pat with string repl. When regex=False, pat

is treated as a literal string; when regex=True, pat is treated as a RegEx pattern.

s.str.contains(pat) Returns a boolean Series indicating if a substring matching the regex pat is contained in each string

s.str.extract(pat) Returns a DataFrame of the first subsequence of each string that matches the regex pat. If pat contains one

group, then only the substring matching the group is extracted

s.str.split(pat=" ") Splits the strings in s at the delimiter pat (defaults to a whitespace). Returns a Series of lists, where each list

contains strings of the characters before and after the split.

Visualization

Matplotlib: x and y are sequences of values. import matplotlib.pyplot as plt

Function

plt.plot(x, y)
plt.scatter(x, y)
plt.hist(x, bins=None)

plt.bar(x, height)

Description

Creates a line plot of x against y
Creates a scatter plot of x against y
Creates a histogram of x; bins can be an integer or a sequence

Creates a bar plot of categories x and corresponding heights height

Seaborn: x and y are column names in a DataFrame data. import seaborn as sns

Function

sns.

sns.

sns

sns.

sns

sns.

sns.

sns.

countplot(data=None, x=None)

histplot(data=None, x=None, stat='count', kde=False)

.displot(data=None, x=None, kind='hist', rug=False)

rugplot(data=None, x=None)

.boxplot(data=None, x=None, y=None)

.violinplot(data=None, x=None, y=None)

scatterplot(data=None, x=None, y=None)

Implot(data=None, x=None, y=None, fit_reg=True)

jointplot(data=None, x=None, y=None, kind='scatter')

Regular Expressions

Description
Create a barplot of value counts of variable x from data

Creates a histogram of x from data, where bin statistics stat is one of 'count’,
'frequency', 'probability’, 'percent’, and 'density’; optionally overlay a kernel
density estimator. displot is similar but can optionally overlay a rug plot and/or a KDE
plot

Adds a rug plot on the x-axis of variable x from data

Create a boxplot of a numeric feature (e.g., y), optionally factoring by a category (e.g., x),
from data. violinplot is similar but also draws a kernel density estimator of the numeric
feature

Create a scatterplot of x versus y from data

Create a scatterplot of x versus y from data, and by default overlay a least-squares
regression line

Combine a bivariate scatterplot of x versus y from data, with univariate density plots of
each variable overlaid on the axes; kind determines the visualization type for the
distribution plot, can be scatter, kde or hist

Operator Description Operator Description

. Matches any character except \n * Matches preceding character/group zero or more times

\ Escapes metacharacters ? Matches preceding character/group zero or one times

| Matches expression on either side of expression; has lowest + Matches preceding character/group one or more times
priority of any operator

\d, \w, \s Predefined character group of digits (0-9), alphanumerics (a- *, $ Matches the beginning and end of the line, respectively
z, A-Z, 0-9, and underscore), or whitespace, respectively

\D, \W, \S Inverse sets of \d, \w, \s, respectively () Capturing group used to create a sub-expression

{m} Matches preceding character/group exactly m times [Character class used to match any of the specified characters

or range (e.g. [abcde] is equivalent to [a-e])

Operator Description Operator Description

{m, n} Matches preceding character/group at least m times and at [~ 1 Invert character class; e.g. [*a-c] matches all characters
most n times. If either m or n are omitted, set lower/upper except a, b, c
bounds to 0 and o, respectively

Modified lecture example for capture groups:
import re

lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"'
re.findall(r'\[\d+\/ (\w+)\/\d+:\d+:\d+:\d+ .+\]', lines) # returns ['Jan']

Function Description
re.match(pattern, string) Returns a match if zero or more characters at beginning of string matches pattern, else None
re.search(pattern, string) Returns a match if zero or more characters anywhere in string matches pattern, else None
re.findall(pattern, string) Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)
re.sub(pattern, repl, string) Returns string after replacing all occurrences of pattern with repl
Modeling
Concept Formula Concept Formula
Variance, ai Correlation r
1 & 5 1z — % Yi— Y
. Z(wl - j) r—=— i
"= nia e Ty
Ly loss R) Linear regression estimate of)
Li(y:9) =ly—9 | y §=00+ 61z
Ly loss) . Least squares linear A R R o
La(y,9) = (y = 9) regression bo=7y— 01z 0, = T‘U—y
T
Empirical risk with loss L "
1 N
R(0) = = L(yir i)
ni3
Multiple Linear Regression Formulas
Concept Formula Concept Formula
Mean squared error R(0) = L]|Y — X0||3 Normal equation)
X'x6=x"y
Least squares estimate, . . o Multiple R? . £ fitted val
_ - variance of fitted values
if X'is full rank 0= (XTX) XY (coefficient of determination) R? = -
variance of y
Rid : 1 _ 2 2 d 2 _ \d 2
ge Regression ~[|1Y —X6||5 + A||0]]5 Squared L2 Norm of § € R 10113 = > %=1 67
L2 Regularization
Ridge regression estimate éﬂdge = (XTX + nAI)IXTY L1 Norm of 6 € R? (1011 = E?:l 10,]

(closed form)

LASSO Regression LY — X0||2 + X||6]]4
L1 Regularization

Scikit-Learn

Package: sklearn.linear_model

Linear Logistic
Regression Regression Function(s) Description

v - LinearRegression(fit_intercept=True) Returns an ordinary least squares Linear Regression model.

Package: sklearn.linear_model

Linear Logistic
Regression Regression Function(s) Description
- v LogisticRegression(fit_intercept=True, Returns an ordinary least squares Linear Regression model. Hyperparameter C
penalty='12", C=1.9) is inverse of regularization parameter, C = 1/A.
v - LassoCV(), RidgeCV() Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model,
respectively, and picks the best model by cross validation.
v v model.fit(X, y) Fits the scikit-learn model to the provided x and y.
v model.predict(X) Returns predictions for the x passed in according to the fitted model.
v model.predict_proba(X) Returns predicted probabilities for X according to the fitted model. If binary
classes, will return probabilities for both class 0 and 1.
N4 N4 model.coef_ Estimated coefficients for the linear model, excluding the intercept.
v v model.intercept_ Bias/intercept term of the linear model. Set to 0.0 if fit_intercept=False.

Package: sklearn.model_selection
Function Description

train_test_split(*arrays, test_size=0.2) Returns two random subsets of each array passed in, with 0.8 of the array in
the first subset and 0.2 in the second subset.
Probability
Let X have a discrete probability distribution P(X = z). X has expectation E[X] = > 2P(X = x) over all possible values z, variance
Var(X) = E[(X — E[X])2] and standard deviation SD(X) = \/\T(X).

Notes Property of Expectation Property of Variance
X is a random variable.)) ,

E[X] =) zP(X =) Var(X) = E[(X — E[X])?] = E[X?] — (E[X))
X is a random variable, a,b € R are)
scalars. ElaX +b] = aE[X] +b Var(aX + b) = a*Var(X)
X,Y are random variables.

E[X+Y] =E[X]+E[Y] Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)
X is a Bernoulli random variable that

ElX]=p Var(X) = p(1 - p)

takes the value 1 with probability p,
and 0 otherwise.

Parameter Estimation and Gradient Descent Update Rule
Parameter Estimation

Suppose for each individual with fixed input &, we observe a random response Y = g(z) + ¢, where g is the true relationship and € is random noise with

zero mean and variance o2

For a new individual with fixed input z, define our random prediction Y(a:) based on a model fit to our observed sample (X, Y). The model risk is the
~ ~ N 2 ~
mean squared prediction error between Y and Y (z): E[(Y — Y (2))?] = 0% + (]E[Y(m)} — g(w)) + Var(Y(z)).
Suppose that input z has p features and the true relationship g is linear with parameter § € RP*1. Then Y = f(z) = 6, + Z?;l 0;x; + € and Y = f(;r:)
for an estimate 0 fit to the observed sample (X, Y).
Gradient Descent
For a learning rate o, the gradient update step is:

) = 9 — o V,L(0®, X, Y)

where VgL(ﬁ(t), X, Y) is the partial derivative/gradient of L with respect to 6, evaluated at 6@,

