Starting Up SQL¶
Before we look at SQL syntax in detail, let's first get ourselves set up to run SQL queries in Jupyter.
Approach #1: SQL Magic¶
1. Load the sql
Module.
Load %%sql
cell magic.
%load_ext sql
2. Connect to a database.
Here, we connect to the SQLite database basic_examples.db
and duckdb database example_duck.db
.
%sql sqlite:///data/basic_examples.db --alias sqlite
%sql duckdb:///data/example_duck.db --alias duckdb
If you were connecting to an "enterprise data platform"
from sqlalchemy import create_engine
snow_engine = create_engine(
f"snowflake://{user}:{password}@{account_identifier}")
%sql snow_engine --alias snow
db_engine = create_engine(
url = f"databricks://token:{access_token}@{server_hostname}?" +
f"http_path={http_path}&catalog={catalog}&schema={schema}"
)
%sql db_engine --alias db
3. Run a simple SQL query.
%sql
parses only the immmediate line as a SQL command.
%sql SELECT * FROM Dragon;
name | year | cute |
---|---|---|
hiccup | 2010 | 10 |
drogon | 2011 | -100 |
dragon 2 | 2019 | 0 |
puff | 2010 | 100 |
smaug | 2011 | None |
The %%sql
command, on the other hand, lets Jupyter parse the rest of the lines (the entire code block) as a SQL command.
%%sql
SELECT * FROM Dragon;
name | year | cute |
---|---|---|
hiccup | 2010 | 10 |
drogon | 2011 | -100 |
dragon 2 | 2019 | 0 |
puff | 2010 | 100 |
smaug | 2011 | None |
Simple query, this time on two different lines.
%%sql
SELECT *
FROM Dragon;
name | year | cute |
---|---|---|
hiccup | 2010 | 10 |
drogon | 2011 | -100 |
dragon 2 | 2019 | 0 |
puff | 2010 | 100 |
smaug | 2011 | None |
Storing one-line %sql
queries¶
For simple one-line queries, you can use IPython's ability to store the result of a magic command like %sql
as if it were any other Python statement, and save the output to a variable:
dragon_table = %sql SELECT * FROM Dragon
dragon_table
name | year | cute |
---|---|---|
hiccup | 2010 | 10 |
drogon | 2011 | -100 |
dragon 2 | 2019 | 0 |
puff | 2010 | 100 |
smaug | 2011 | None |
As noted above, the result of the query is a Python variable of type ResultSet
, more specifically:
type(dragon_table)
sql.run.resultset.ResultSet
You need to manually convert it to a Pandas DataFrame
if you want to do pandas-things with its content:
dragon_df = dragon_table.DataFrame()
dragon_df
name | year | cute | |
---|---|---|---|
0 | hiccup | 2010 | 10.0 |
1 | drogon | 2011 | -100.0 |
2 | dragon 2 | 2019 | 0.0 |
3 | puff | 2010 | 100.0 |
4 | smaug | 2011 | NaN |
You can configure jupysql
to automatically convert all outputs to Pandas DataFrames. This can be handy if you intend all your Python-side work to be done with Pandas, as it saves you from manually having to call .DataFrame()
first on all outputs. On the other hand, you don't get access to the original SQL ResultSet
object, which have a number of interesting properties and capabilities. You can learn more about those in the jupysql documentation.
For now, let's turn this on so you can see how this simplified, "pandas all the way" workflow looks like:
%config SqlMagic.autopandas = True
dragon_df = %sql SELECT * FROM Dragon
dragon_df
name | year | cute | |
---|---|---|---|
0 | hiccup | 2010 | 10.0 |
1 | drogon | 2011 | -100.0 |
2 | dragon 2 | 2019 | 0.0 |
3 | puff | 2010 | 100.0 |
4 | smaug | 2011 | NaN |
type(dragon_df)
pandas.core.frame.DataFrame
Storing output of multiple SQL lines¶
You can use the variable <<
syntax in jupysql to store its output (this will honor your autopandas
state and store either a sql.run.ResultState
or a Pandas DataFrame
):
%%sql res <<
SELECT *
FROM Dragon;
res
name | year | cute | |
---|---|---|---|
0 | hiccup | 2010 | 10.0 |
1 | drogon | 2011 | -100.0 |
2 | dragon 2 | 2019 | 0.0 |
3 | puff | 2010 | 100.0 |
4 | smaug | 2011 | NaN |
Approach #2: pd.read_sql
¶
It turns out that pandas
has a special-purpose function to parse SQL queries. We can pass in a SQL query as a string to return a pandas
DataFrame. To achieve the same result as we did using cell magic above, we can do the following.
1. Connect to a database
import sqlalchemy
import pandas as pd
engine = sqlalchemy.create_engine("duckdb:///data/example_duck.db")
2. Run a simple SQL query
query = """
SELECT *
FROM Dragon;
"""
df = pd.read_sql(query, engine)
df
name | year | cute | |
---|---|---|---|
0 | hiccup | 2010 | 10.0 |
1 | drogon | 2011 | -100.0 |
2 | dragon 2 | 2019 | 0.0 |
3 | puff | 2010 | 100.0 |
4 | smaug | 2011 | NaN |
Approach #3 -- DuckDB Special¶
Now that we are using DuckDB we can do something extra crazy:
import seaborn as sns
import duckdb
mpg = sns.load_dataset("mpg")
duckdb.query("SELECT * FROM mpg").df()
mpg | cylinders | displacement | horsepower | weight | acceleration | model_year | origin | name | |
---|---|---|---|---|---|---|---|---|---|
0 | 18.0 | 8 | 307.0 | 130.0 | 3504 | 12.0 | 70 | usa | chevrolet chevelle malibu |
1 | 15.0 | 8 | 350.0 | 165.0 | 3693 | 11.5 | 70 | usa | buick skylark 320 |
2 | 18.0 | 8 | 318.0 | 150.0 | 3436 | 11.0 | 70 | usa | plymouth satellite |
3 | 16.0 | 8 | 304.0 | 150.0 | 3433 | 12.0 | 70 | usa | amc rebel sst |
4 | 17.0 | 8 | 302.0 | 140.0 | 3449 | 10.5 | 70 | usa | ford torino |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
393 | 27.0 | 4 | 140.0 | 86.0 | 2790 | 15.6 | 82 | usa | ford mustang gl |
394 | 44.0 | 4 | 97.0 | 52.0 | 2130 | 24.6 | 82 | europe | vw pickup |
395 | 32.0 | 4 | 135.0 | 84.0 | 2295 | 11.6 | 82 | usa | dodge rampage |
396 | 28.0 | 4 | 120.0 | 79.0 | 2625 | 18.6 | 82 | usa | ford ranger |
397 | 31.0 | 4 | 119.0 | 82.0 | 2720 | 19.4 | 82 | usa | chevy s-10 |
398 rows × 9 columns
DuckDB can also see my dataframes in the python environment allowing me to do dataframe manipulation in SQL!
Tables and Schema¶
A database contains a collection of SQL tables. Let's connect to our "toy" database example_duck.db
and explore the tables it stores.
%%sql
SELECT * FROM information_schema.tables
table_catalog | table_schema | table_name | table_type | self_referencing_column_name | reference_generation | user_defined_type_catalog | user_defined_type_schema | user_defined_type_name | is_insertable_into | is_typed | commit_action | TABLE_COMMENT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | example_duck | main | dish | BASE TABLE | None | None | None | None | None | YES | NO | None | None |
1 | example_duck | main | dragon | BASE TABLE | None | None | None | None | None | YES | NO | None | None |
2 | example_duck | main | scene | BASE TABLE | None | None | None | None | None | YES | NO | None | None |
%%sql
SELECT * FROM information_schema.columns
table_catalog | table_schema | table_name | column_name | ordinal_position | column_default | is_nullable | data_type | character_maximum_length | character_octet_length | ... | identity_generation | identity_start | identity_increment | identity_maximum | identity_minimum | identity_cycle | is_generated | generation_expression | is_updatable | COLUMN_COMMENT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | example_duck | main | dish | name | 1 | None | NO | VARCHAR | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
1 | example_duck | main | dish | type | 2 | None | YES | VARCHAR | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
2 | example_duck | main | dish | cost | 3 | None | YES | INTEGER | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
3 | example_duck | main | dragon | name | 1 | None | NO | VARCHAR | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
4 | example_duck | main | dragon | year | 2 | None | YES | INTEGER | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
5 | example_duck | main | dragon | cute | 3 | None | YES | INTEGER | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
6 | example_duck | main | scene | id | 1 | None | NO | INTEGER | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
7 | example_duck | main | scene | biome | 2 | None | NO | VARCHAR | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
8 | example_duck | main | scene | city | 3 | None | NO | VARCHAR | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
9 | example_duck | main | scene | visitors | 4 | None | YES | INTEGER | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
10 | example_duck | main | scene | created_at | 5 | current_date() | YES | TIMESTAMP | NaN | NaN | ... | None | None | None | None | None | NaN | None | None | NaN | None |
11 rows × 45 columns
Getting Schema information with SQLAlchemy¶
How you list the tables varies across database platforms. For example, the statement:
SELECT * FROM information_schema.columns
only works on Postgres compatible databases.
For example, if we wanted to get the schema for tables in sqlite we would need the following:
pd.read_sql("SELECT * FROM sqlite_schema", "sqlite:///data/basic_examples.db")
type | name | tbl_name | rootpage | sql | |
---|---|---|---|---|---|
0 | table | sqlite_sequence | sqlite_sequence | 7 | CREATE TABLE sqlite_sequence(name,seq) |
1 | table | Dragon | Dragon | 2 | CREATE TABLE Dragon (\n name TEXT PRIMARY K... |
2 | index | sqlite_autoindex_Dragon_1 | Dragon | 3 | None |
3 | table | Dish | Dish | 4 | CREATE TABLE Dish (\n name TEXT PRIMARY KEY... |
4 | index | sqlite_autoindex_Dish_1 | Dish | 5 | None |
5 | table | Scene | Scene | 6 | CREATE TABLE Scene (\n id INTEGER PRIMARY K... |
Fortunately, SQLAlchemy has some generic tools that will be helpful regardless of what database platform you use.
from sqlalchemy import inspect
inspector = inspect(engine)
inspector.get_table_names()
['dish', 'dragon', 'scene']
inspector.get_columns('scene')
[{'name': 'id', 'type': Integer(), 'nullable': False, 'default': None, 'autoincrement': False, 'comment': None}, {'name': 'biome', 'type': String(), 'nullable': False, 'default': None, 'autoincrement': False, 'comment': None}, {'name': 'city', 'type': String(), 'nullable': False, 'default': None, 'autoincrement': False, 'comment': None}, {'name': 'visitors', 'type': Integer(), 'nullable': True, 'default': None, 'autoincrement': False, 'comment': None}, {'name': 'created_at', 'type': TIMESTAMP(), 'nullable': True, 'default': 'current_date()', 'autoincrement': False, 'comment': None}]
Same with SQLite
sqlite_engine = sqlalchemy.create_engine("sqlite:///data/basic_examples.db")
inspect(sqlite_engine).get_columns("scene")
[{'name': 'id', 'type': INTEGER(), 'nullable': True, 'default': None, 'primary_key': 1}, {'name': 'biome', 'type': TEXT(), 'nullable': False, 'default': None, 'primary_key': 0}, {'name': 'city', 'type': TEXT(), 'nullable': False, 'default': None, 'primary_key': 0}, {'name': 'visitors', 'type': INTEGER(), 'nullable': True, 'default': None, 'primary_key': 0}, {'name': 'created_at', 'type': DATETIME(), 'nullable': True, 'default': "DATETIME('now')", 'primary_key': 0}]
More advanced example of creating tables with primary and foreign key constraints:
%sql duckdb:///data/duckdb_example.db --alias student_db
%%sql student_db
DROP TABLE IF EXISTS grade;
DROP TABLE IF EXISTS assignment;
DROP TABLE IF EXISTS student;
CREATE TABLE student (
student_id INTEGER PRIMARY KEY,
name VARCHAR,
email VARCHAR
);
CREATE TABLE assignment (
assignment_id INTEGER PRIMARY KEY,
description VARCHAR
);
CREATE TABLE grade (
student_id INTEGER,
assignment_id INTEGER,
score REAL CHECK (score > 0 AND score <= 100),
FOREIGN KEY (student_id) REFERENCES student(student_id),
FOREIGN KEY (assignment_id) REFERENCES assignment(assignment_id)
);
INSERT INTO student VALUES
(123, 'JoeyG', 'jegonzal@berkeley.edu'),
(456, 'NargesN', 'norouzi@berkeley.edu');
INSERT INTO assignment VALUES
(1, 'easy assignment'),
(2, 'hard assignment');
Success |
---|
%%sql
INSERT INTO grade VALUES
(123, 1, 80),
(123, 2, 42),
(456, 2, 100);
Success |
---|
%sql SELECT * FROM grade;
student_id | assignment_id | score | |
---|---|---|---|
0 | 123 | 1 | 80.0 |
1 | 123 | 2 | 42.0 |
2 | 456 | 2 | 100.0 |
%%sql duckdb
SELECT * FROM Dragon;
name | year | cute | |
---|---|---|---|
0 | hiccup | 2010 | 10.0 |
1 | drogon | 2011 | -100.0 |
2 | dragon 2 | 2019 | 0.0 |
3 | puff | 2010 | 100.0 |
4 | smaug | 2011 | NaN |
%%sql
SELECT cute, year FROM Dragon;
cute | year | |
---|---|---|
0 | 10.0 | 2010 |
1 | -100.0 | 2011 |
2 | 0.0 | 2019 |
3 | 100.0 | 2010 |
4 | NaN | 2011 |
Aliasing with AS
¶
%%sql
SELECT cute AS cuteness,
year AS "birth year"
FROM Dragon;
cuteness | birth year | |
---|---|---|
0 | 10.0 | 2010 |
1 | -100.0 | 2011 |
2 | 0.0 | 2019 |
3 | 100.0 | 2010 |
4 | NaN | 2011 |
Uniqueness with DISTINCT
¶
%%sql
SELECT DISTINCT year
FROM Dragon;
year | |
---|---|
0 | 2010 |
1 | 2019 |
2 | 2011 |
Filtering with WHERE
¶
%%sql
SELECT name, year
FROM Dragon
WHERE cute > 0;
name | year | |
---|---|---|
0 | hiccup | 2010 |
1 | puff | 2010 |
%%sql
SELECT name, cute, year
FROM Dragon
WHERE cute > 0 OR year > 2013;
name | cute | year | |
---|---|---|---|
0 | hiccup | 10 | 2010 |
1 | puff | 100 | 2010 |
2 | dragon 2 | 0 | 2019 |
%%sql
SELECT name, year
FROM Dragon
WHERE name IN ('puff', 'hiccup');
name | year | |
---|---|---|
0 | puff | 2010 |
1 | hiccup | 2010 |
%%sql
SELECT name, cute
FROM Dragon
WHERE cute IS NOT NULL;
name | cute | |
---|---|---|
0 | hiccup | 10 |
1 | drogon | -100 |
2 | dragon 2 | 0 |
3 | puff | 100 |
Ordering data using ORDER BY
¶
%%sql
SELECT *
FROM Dragon
ORDER BY cute DESC;
name | year | cute | |
---|---|---|---|
0 | puff | 2010 | 100.0 |
1 | hiccup | 2010 | 10.0 |
2 | dragon 2 | 2019 | 0.0 |
3 | drogon | 2011 | -100.0 |
4 | smaug | 2011 | NaN |
Restricting output with LIMIT
and OFFSET
¶
%%sql
SELECT *
FROM Dragon
LIMIT 2;
name | year | cute | |
---|---|---|---|
0 | hiccup | 2010 | 10 |
1 | drogon | 2011 | -100 |
%%sql
SELECT *
FROM Dragon
LIMIT 2
OFFSET 1;
name | year | cute | |
---|---|---|---|
0 | drogon | 2011 | -100 |
1 | dragon 2 | 2019 | 0 |
Sampling with RANDOM()
¶
What if we wanted a random sample:
%%sql
SELECT *
FROM Dragon
ORDER BY RANDOM()
LIMIT 2
name | year | cute | |
---|---|---|---|
0 | dragon 2 | 2019 | 0 |
1 | hiccup | 2010 | 10 |
%%sql
SELECT *
FROM Dragon USING SAMPLE reservoir(2 ROWS) REPEATABLE (100);
name | year | cute | |
---|---|---|---|
0 | puff | 2010 | 100 |
1 | drogon | 2011 | -100 |
Grouping Data with GROUP BY
¶
%%sql
SELECT *
FROM Dish;
name | type | cost | |
---|---|---|---|
0 | ravioli | entree | 10 |
1 | ramen | entree | 13 |
2 | taco | entree | 7 |
3 | edamame | appetizer | 4 |
4 | fries | appetizer | 4 |
5 | potsticker | appetizer | 4 |
6 | ice cream | dessert | 5 |
%%sql
SELECT type
FROM Dish;
type | |
---|---|
0 | entree |
1 | entree |
2 | entree |
3 | appetizer |
4 | appetizer |
5 | appetizer |
6 | dessert |
%%sql
SELECT type
FROM Dish
GROUP BY type;
type | |
---|---|
0 | entree |
1 | dessert |
2 | appetizer |
%%sql
SELECT type, SUM(cost)
FROM Dish
GROUP BY type;
type | sum("cost") | |
---|---|---|
0 | entree | 30.0 |
1 | dessert | 5.0 |
2 | appetizer | 12.0 |
%%sql
SELECT type,
SUM(cost),
MIN(cost),
MAX(name)
FROM Dish
GROUP BY type;
type | sum("cost") | min("cost") | max("name") | |
---|---|---|---|---|
0 | entree | 30.0 | 7 | taco |
1 | dessert | 5.0 | 5 | ice cream |
2 | appetizer | 12.0 | 4 | potsticker |