In [1]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import random
from sklearn import datasets
import warnings
warnings.filterwarnings('ignore')
In [2]:
iris, _ = datasets.load_iris(return_X_y=True, as_frame=True)
iris.rename(columns={"sepal length (cm)": "sepal_length", "sepal width (cm)": "sepal_width",
"petal length (cm)": "petal_length", "petal width (cm)": "petal_width"}, inplace=True)
iris.sample(10)
Out[2]:
sepal_length | sepal_width | petal_length | petal_width | |
---|---|---|---|---|
60 | 5.0 | 2.0 | 3.5 | 1.0 |
128 | 6.4 | 2.8 | 5.6 | 2.1 |
44 | 5.1 | 3.8 | 1.9 | 0.4 |
19 | 5.1 | 3.8 | 1.5 | 0.3 |
137 | 6.4 | 3.1 | 5.5 | 1.8 |
125 | 7.2 | 3.2 | 6.0 | 1.8 |
117 | 7.7 | 3.8 | 6.7 | 2.2 |
96 | 5.7 | 2.9 | 4.2 | 1.3 |
6 | 4.6 | 3.4 | 1.4 | 0.3 |
58 | 6.6 | 2.9 | 4.6 | 1.3 |
K-Means Clustering¶
In today's lecture, we will use the data from the iris
dataset from sklearn
to perform clustering using two features, petal_length
and petal_width.
Summary of the algorithm:
- Repeat until convergence:
- Color points according to the closest center.
- Move the center for each color to the center of points with that color.
In [3]:
sns.scatterplot(data=iris, x="petal_length", y="petal_width", color="black")
plt.xlabel('x')
plt.ylabel('y');
In [4]:
class Center():
def __init__(self, data):
"""generates a random center inside the region bounded by the data"""
num_dimensions = data.shape[1]
self.coordinates = np.array([0.0] * num_dimensions)
for i in range(num_dimensions):
min_value = np.min(data[:, i])
max_value = np.max(data[:, i])
random_value = random.uniform(min_value, max_value)
self.coordinates[i] = random_value
def __str__(self):
return str(self.coordinates)
def __repr__(self):
return repr(self.coordinates)
def dist(self, data_point):
return np.sqrt(np.sum((self.coordinates - data_point)**2, axis = 1))
def dist_sq(self, data_point):
return np.sum((self.coordinates - data_point)**2, axis = 1)
In [5]:
c1 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c2 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
In [6]:
# Force coordinates from the lecture demo
c1.coordinates = np.array([2.52364007, 2.31040024])
c2.coordinates = np.array([6.53276402, 1.211463])
In [7]:
def plot_centers_and_black_data(iris, centers):
for center in centers:
plt.plot(center.coordinates[0], center.coordinates[1], '*', markersize=10)
sns.scatterplot(data=iris, x="petal_length", y="petal_width", color="black")
plt.xlabel('petal_length')
plt.ylabel('petal_width')
legend_text = ['c' + str(i) for i in range(1, len(centers) + 1)]
legend_text.append('data')
plt.legend(legend_text)
In [8]:
plot_centers_and_black_data(iris, (c1, c2))
In [9]:
def get_cluster_number(dists):
return np.where(dists == np.min(dists))[0][0]
In [10]:
iris["dist1"] = c1.dist(iris[["petal_length", "petal_width"]])
iris["dist2"] = c2.dist(iris[["petal_length", "petal_width"]])
iris["cluster"] = iris[["dist1", "dist2"]].apply(get_cluster_number, axis = 1)
iris.head(10)
Out[10]:
sepal_length | sepal_width | petal_length | petal_width | dist1 | dist2 | cluster | |
---|---|---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | 2.390890 | 5.231474 | 0 |
1 | 4.9 | 3.0 | 1.4 | 0.2 | 2.390890 | 5.231474 | 0 |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 2.439484 | 5.329623 | 0 |
3 | 4.6 | 3.1 | 1.5 | 0.2 | 2.345555 | 5.133398 | 0 |
4 | 5.0 | 3.6 | 1.4 | 0.2 | 2.390890 | 5.231474 | 0 |
5 | 5.4 | 3.9 | 1.7 | 0.4 | 2.080387 | 4.900416 | 0 |
6 | 4.6 | 3.4 | 1.4 | 0.3 | 2.303101 | 5.213064 | 0 |
7 | 5.0 | 3.4 | 1.5 | 0.2 | 2.345555 | 5.133398 | 0 |
8 | 4.4 | 2.9 | 1.4 | 0.2 | 2.390890 | 5.231474 | 0 |
9 | 4.9 | 3.1 | 1.5 | 0.1 | 2.435920 | 5.154034 | 0 |
In [11]:
iris["cluster"].value_counts()
Out[11]:
cluster 0 79 1 71 Name: count, dtype: int64
In [12]:
def plot_centers_and_colorized_data(iris, centers):
plt.figure()
for center in centers:
plt.plot(center.coordinates[0], center.coordinates[1],
marker='*', markersize=10, linestyle="None")
current_palette = sns.color_palette()[0:len(centers)]
sns.scatterplot(data=iris, x="petal_length", y="petal_width", hue="cluster", palette=current_palette)
plt.xlabel('petal_length')
plt.ylabel('petal_width')
legend_text = ['c' + str(i) for i in range(1, len(centers) + 1)]
legend_text.append('data')
plt.legend(legend_text)
In [13]:
plot_centers_and_colorized_data(iris, (c1, c2))
In [14]:
average_c1_length = np.mean(iris[iris["cluster"] == 0]["petal_length"])
average_c1_width = np.mean(iris[iris["cluster"] == 0]["petal_width"])
c1.coordinates = (average_c1_length, average_c1_width)
average_c2_length = np.mean(iris[iris["cluster"] == 1]["petal_length"])
average_c2_width = np.mean(iris[iris["cluster"] == 1]["petal_width"])
c2.coordinates = (average_c2_length, average_c2_width)
In [15]:
plot_centers_and_black_data(iris, (c1, c2))
In [16]:
iris["dist1"] = c1.dist(iris[["petal_length", "petal_width"]])
iris["dist2"] = c2.dist(iris[["petal_length", "petal_width"]])
iris["cluster"] = iris[["dist1", "dist2"]].apply(get_cluster_number, axis = 1)
In [17]:
plot_centers_and_colorized_data(iris, (c1, c2))
In [18]:
average_c1_length = np.mean(iris[iris["cluster"] == 0]["petal_length"])
average_c1_width = np.mean(iris[iris["cluster"] == 0]["petal_width"])
c1.coordinates = (average_c1_length, average_c1_width)
average_c2_length = np.mean(iris[iris["cluster"] == 1]["petal_length"])
average_c2_width = np.mean(iris[iris["cluster"] == 1]["petal_width"])
c2.coordinates = (average_c2_length, average_c2_width)
In [19]:
plot_centers_and_black_data(iris, (c1, c2))
In [20]:
iris["dist1"] = c1.dist(iris[["petal_length", "petal_width"]])
iris["dist2"] = c2.dist(iris[["petal_length", "petal_width"]])
iris["cluster"] = iris[["dist1", "dist2"]].apply(get_cluster_number, axis = 1)
In [21]:
plot_centers_and_colorized_data(iris, (c1, c2))
In [22]:
average_c1_length = np.mean(iris[iris["cluster"] == 0]["petal_length"])
average_c1_width = np.mean(iris[iris["cluster"] == 0]["petal_width"])
c1.coordinates = (average_c1_length, average_c1_width)
average_c2_length = np.mean(iris[iris["cluster"] == 1]["petal_length"])
average_c2_width = np.mean(iris[iris["cluster"] == 1]["petal_width"])
c2.coordinates = (average_c2_length, average_c2_width)
In [23]:
plot_centers_and_black_data(iris, (c1, c2))
In [24]:
iris["dist1"] = c1.dist(iris[["petal_length", "petal_width"]])
iris["dist2"] = c2.dist(iris[["petal_length", "petal_width"]])
iris["cluster"] = iris[["dist1", "dist2"]].apply(get_cluster_number, axis = 1)
In [25]:
plot_centers_and_colorized_data(iris, (c1, c2))
In [26]:
average_c1_length = np.mean(iris[iris["cluster"] == 0]["petal_length"])
average_c1_width = np.mean(iris[iris["cluster"] == 0]["petal_width"])
c1.coordinates = (average_c1_length, average_c1_width)
average_c2_length = np.mean(iris[iris["cluster"] == 1]["petal_length"])
average_c2_width = np.mean(iris[iris["cluster"] == 1]["petal_width"])
c2.coordinates = (average_c2_length, average_c2_width)
In [27]:
plot_centers_and_black_data(iris, (c1, c2))
In [28]:
iris["dist1"] = c1.dist(iris[["petal_length", "petal_width"]])
iris["dist2"] = c2.dist(iris[["petal_length", "petal_width"]])
iris["cluster"] = iris[["dist1", "dist2"]].apply(get_cluster_number, axis = 1)
In [29]:
plot_centers_and_colorized_data(iris, (c1, c2))
In [30]:
average_c1_length = np.mean(iris[iris["cluster"] == 0]["petal_length"])
average_c1_width = np.mean(iris[iris["cluster"] == 0]["petal_width"])
c1.coordinates = (average_c1_length, average_c1_width)
average_c2_length = np.mean(iris[iris["cluster"] == 1]["petal_length"])
average_c2_width = np.mean(iris[iris["cluster"] == 1]["petal_width"])
c2.coordinates = (average_c2_length, average_c2_width)
In [31]:
plot_centers_and_black_data(iris, (c1, c2))
In [32]:
average_c1_length = np.mean(iris[iris["cluster"] == 0]["petal_length"])
average_c1_width = np.mean(iris[iris["cluster"] == 0]["petal_width"])
c1.coordinates = (average_c1_length, average_c1_width)
average_c2_length = np.mean(iris[iris["cluster"] == 1]["petal_length"])
average_c2_width = np.mean(iris[iris["cluster"] == 1]["petal_width"])
c2.coordinates = (average_c2_length, average_c2_width)
In [33]:
plot_centers_and_colorized_data(iris, (c1, c2))
Example for K > 2¶
In [34]:
import copy
def compute_centers_after_N_iterations(data, column_names, centers, N):
centers = copy.deepcopy(centers)
for i in range(N):
# Recompute clusters
dist_names = []
for center_num in range(len(centers)):
data["dist" + str(center_num)] = centers[center_num].dist(data[column_names])
dist_names.append("dist" + str(center_num))
data["cluster"] = data[dist_names].apply(get_cluster_number, axis = 1)
# Update centers
for center_num in range(len(centers)):
for col_num in range(len(column_names)):
col_name = column_names[col_num]
centers[center_num].coordinates[col_num] = np.mean(data[data["cluster"] == center_num][col_name])
return centers
In [35]:
c1 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c2 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c1.coordinates = np.array([2.52364007, 2.31040024])
c2.coordinates = np.array([6.53276402, 1.211463])
In [36]:
iris
Out[36]:
sepal_length | sepal_width | petal_length | petal_width | dist1 | dist2 | cluster | |
---|---|---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | 0.111489 | 3.824028 | 0 |
1 | 4.9 | 3.0 | 1.4 | 0.2 | 0.111489 | 3.824028 | 0 |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 0.202142 | 3.916407 | 0 |
3 | 4.6 | 3.1 | 1.5 | 0.2 | 0.063233 | 3.732042 | 0 |
4 | 5.0 | 3.6 | 1.4 | 0.2 | 0.111489 | 3.824028 | 0 |
... | ... | ... | ... | ... | ... | ... | ... |
145 | 6.7 | 3.0 | 5.2 | 2.3 | 4.230663 | 0.676487 | 1 |
146 | 6.3 | 2.5 | 5.0 | 1.9 | 3.871120 | 0.230631 | 1 |
147 | 6.5 | 3.0 | 5.2 | 2.0 | 4.094650 | 0.420388 | 1 |
148 | 6.2 | 3.4 | 5.4 | 2.3 | 4.407000 | 0.779445 | 1 |
149 | 5.9 | 3.0 | 5.1 | 1.8 | 3.921694 | 0.210959 | 1 |
150 rows × 7 columns
In [37]:
def inertia(data, centers):
total_inertia = 0
for center_num in range(len(centers)):
data_in_this_cluster = data[data["cluster"] == center_num]
total_inertia += np.sum(centers[center_num].dist(data_in_this_cluster[["petal_length", "petal_width"]]))
return total_inertia
In [38]:
def distortion(data, centers):
total_distortion = 0
for center_num in range(len(centers)):
data_in_this_cluster = data[data["cluster"] == center_num]
total_distortion += np.sum(centers[center_num].dist(data_in_this_cluster[["petal_length", "petal_width"]]))/len(data_in_this_cluster)
return total_distortion
In [39]:
random.seed(25)
c1 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c2 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c3 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c4 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
new_centers = compute_centers_after_N_iterations(iris, ['petal_length', 'petal_width'], [c1, c2, c3, c4], 12)
print(f"inertia: {inertia(iris, new_centers)}, distortion: {distortion(iris, new_centers)})")
plot_centers_and_colorized_data(iris, new_centers)
inertia: 44.88363871576328, distortion: 1.2530251953116613)
In [40]:
random.seed(29)
c1 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c2 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c3 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c4 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
new_centers = compute_centers_after_N_iterations(iris, ['petal_length', 'petal_width'], [c1, c2, c3, c4], 12)
print(f"inertia: {inertia(iris, new_centers)}, distortion: {distortion(iris, new_centers)})")
plot_centers_and_colorized_data(iris, new_centers)
inertia: 45.87509130916156, distortion: 1.3068391699161572)
In [41]:
random.seed(40)
c1 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c2 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c3 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c4 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
new_centers = compute_centers_after_N_iterations(iris, ['petal_length', 'petal_width'], [c1, c2, c3, c4], 12)
print(f"inertia: {inertia(iris, new_centers)}, distortion: {distortion(iris, new_centers)})")
plot_centers_and_colorized_data(iris, new_centers)
inertia: 54.272527867765156, distortion: 1.4992328098338596)
In [42]:
random.seed(75)
c1 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c2 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c3 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
c4 = Center(iris.loc[:, ['petal_length', 'petal_width']].values)
new_centers = compute_centers_after_N_iterations(iris, ['petal_length', 'petal_width'], [c1, c2, c3, c4], 12)
print(f"inertia: {inertia(iris, new_centers)}, distortion: {distortion(iris, new_centers)})")
plot_centers_and_colorized_data(iris, new_centers)
inertia: 44.88363871576328, distortion: 1.2530251953116613)
In [43]:
random.seed(20)
np.random.seed(20)
iris_small = iris.sample(7)
c1 = Center(iris_small.loc[:, ['petal_length', 'petal_width']].values)
c2 = Center(iris_small.loc[:, ['petal_length', 'petal_width']].values)
new_centers2 = compute_centers_after_N_iterations(iris_small, ['petal_length', 'petal_width'], [c1, c2], 12)
plot_centers_and_colorized_data(iris_small, new_centers2)
In [44]:
def print_distances_squared(data, centers):
for center_num in range(len(centers)):
data_in_this_cluster = data[data["cluster"] == center_num]
print(centers[center_num].dist(data_in_this_cluster[["petal_length", "petal_width"]])**2)
print_distances_squared(iris_small, new_centers2)
73 0.837778 129 0.121111 143 0.547778 dtype: float64 47 4.765 74 0.845 67 0.425 89 0.425 dtype: float64
In [45]:
inertia(iris_small, new_centers2)
Out[45]:
6.409399633729917
In [46]:
distortion(iris_small, new_centers2)
Out[46]:
1.7693026035868602
In [47]:
iris_small
Out[47]:
sepal_length | sepal_width | petal_length | petal_width | dist1 | dist2 | cluster | dist0 | dist3 | |
---|---|---|---|---|---|---|---|---|---|
47 | 4.6 | 3.2 | 1.4 | 0.2 | 2.182888 | 4.783274 | 1 | 4.334487 | 3.637045 |
73 | 6.1 | 2.8 | 4.7 | 1.2 | 1.274755 | 1.415877 | 0 | 0.915302 | 0.401564 |
74 | 6.4 | 2.9 | 4.3 | 1.3 | 0.919239 | 1.691724 | 1 | 1.233333 | 0.545981 |
129 | 7.2 | 3.0 | 5.8 | 1.6 | 2.438237 | 0.508523 | 0 | 0.348010 | 1.042109 |
67 | 5.8 | 2.7 | 4.1 | 1.0 | 0.651920 | 2.017764 | 1 | 1.535506 | 0.888636 |
89 | 5.5 | 2.5 | 4.0 | 1.3 | 0.651920 | 1.960509 | 1 | 1.520234 | 0.814145 |
143 | 6.8 | 3.2 | 5.9 | 2.3 | 2.797320 | 0.222950 | 0 | 0.740120 | 1.340931 |
Example of Inertia Failing to Match Intuition¶
In [48]:
c1.coordinates = [1.2, 0.15]
c2.coordinates = [4.906000000000001, 1.6760000000000006]
iris["dist1"] = c1.dist(iris[["petal_length", "petal_width"]])
iris["dist2"] = c2.dist(iris[["petal_length", "petal_width"]])
iris["cluster"] = iris[["dist1", "dist2"]].apply(get_cluster_number, axis = 1)
In [49]:
plot_centers_and_colorized_data(iris, (c1, c2))
In [50]:
print(f"inertia: {inertia(iris, [c1, c2])}, distortion: {distortion(iris, [c1, c2])})")
inertia: 94.3164648130483, distortion: 1.0959547804008838)
In [51]:
average_c1_length = np.mean(iris[iris["cluster"] == 0]["petal_length"])
average_c1_width = np.mean(iris[iris["cluster"] == 0]["petal_width"])
c1.coordinates = (average_c1_length, average_c1_width)
average_c2_length = np.mean(iris[iris["cluster"] == 1]["petal_length"])
average_c2_width = np.mean(iris[iris["cluster"] == 1]["petal_width"])
c2.coordinates = (average_c2_length, average_c2_width)
In [52]:
plot_centers_and_black_data(iris, (c1, c2))
In [53]:
iris["dist1"] = c1.dist(iris[["petal_length", "petal_width"]])
iris["dist2"] = c2.dist(iris[["petal_length", "petal_width"]])
iris["cluster"] = iris[["dist1", "dist2"]].apply(get_cluster_number, axis = 1)
In [54]:
plot_centers_and_colorized_data(iris, (c1, c2))
In [55]:
print(f"inertia: {inertia(iris, [c1, c2])}, distortion: {distortion(iris, [c1, c2])})")
inertia: 87.2103463131798, distortion: 0.9775403068856574)
Hierarchical Agglomerative Clustering¶
In [56]:
np.random.seed(42)
iris_small = iris.sample(13).loc[:, 'sepal_length':'petal_width'].reset_index(drop=True)
iris_small = iris_small.drop(8).reset_index(drop=True)
In [57]:
sns.scatterplot(data=iris_small, x="petal_length", y="petal_width", color="black");
In [58]:
iris_small["cluster"] = np.array(range(0, len(iris_small)))
In [59]:
iris_small
Out[59]:
sepal_length | sepal_width | petal_length | petal_width | cluster | |
---|---|---|---|---|---|
0 | 6.1 | 2.8 | 4.7 | 1.2 | 0 |
1 | 5.7 | 3.8 | 1.7 | 0.3 | 1 |
2 | 7.7 | 2.6 | 6.9 | 2.3 | 2 |
3 | 6.0 | 2.9 | 4.5 | 1.5 | 3 |
4 | 6.8 | 2.8 | 4.8 | 1.4 | 4 |
5 | 5.4 | 3.4 | 1.5 | 0.4 | 5 |
6 | 5.6 | 2.9 | 3.6 | 1.3 | 6 |
7 | 6.9 | 3.1 | 5.1 | 2.3 | 7 |
8 | 5.8 | 2.7 | 3.9 | 1.2 | 8 |
9 | 6.5 | 3.2 | 5.1 | 2.0 | 9 |
10 | 4.8 | 3.0 | 1.4 | 0.1 | 10 |
11 | 5.5 | 3.5 | 1.3 | 0.2 | 11 |
In [60]:
def plot_clusters(data):
fig = plt.figure()
p1 = sns.scatterplot(data=data, x="petal_length", y="petal_width")
plt.axis('equal')
for line in range(0,data.shape[0]):
p1.text(data["petal_length"][line]+0.05, data["petal_width"][line] - 0.03,
data["cluster"][line], horizontalalignment='left',
size='medium', color='black', weight='semibold')
return fig
fig = plot_clusters(iris_small)
In [61]:
from scipy.spatial import distance
def dist_between_clusters(data, cnum1, cnum2):
cluster1 = data[data["cluster"] == cnum1]
cluster2 = data[data["cluster"] == cnum2]
return distance.cdist(cluster1[["petal_length", "petal_width"]], cluster2[["petal_length", "petal_width"]]).max()
In [62]:
def closest_clusters(data):
cluster_values = data["cluster"].unique()
smallest_distance = float("inf")
best_pair = [-1, -1]
for cnum1 in cluster_values:
for cnum2 in cluster_values:
if cnum1 == cnum2:
continue
cur_dist = dist_between_clusters(data, cnum1, cnum2)
if cur_dist < smallest_distance:
best_pair = [cnum1, cnum2]
smallest_distance = cur_dist
return best_pair
In [63]:
def merge_clusters(data, cnum1, cnum2):
data.loc[data["cluster"] == cnum2, "cluster"] = cnum1
In [64]:
i = 0
while len(iris_small["cluster"].unique()) != 2:
i += 1
cnum1, cnum2 = closest_clusters(iris_small)
merge_clusters(iris_small, cnum1, cnum2)
plot_clusters(iris_small)
Run on full dataset¶
In [65]:
iris_small = iris.copy()
iris_small["cluster"] = np.array(range(0, len(iris_small)))
fig = plot_clusters(iris_small)
In [66]:
from sklearn.cluster import AgglomerativeClustering
clustering = AgglomerativeClustering().fit(iris[["petal_length", "petal_width"]])
In [67]:
clustering.labels_
Out[67]:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
In [68]:
iris["cluster"] = clustering.labels_
In [69]:
sns.scatterplot(data=iris, x="petal_length", y="petal_width",
hue ="cluster", legend=None);
plt.axis('equal');
In [70]:
fig = plot_clusters(iris)
In [71]:
# From https://github.com/scikit-learn/scikit-learn/blob/70cf4a676caa2d2dad2e3f6e4478d64bcb0506f7/examples/cluster/plot_hierarchical_clustering_dendrogram.py
from scipy.cluster.hierarchy import dendrogram
def plot_dendrogram(model, **kwargs):
# Children of hierarchical clustering
children = model.children_
# Distances between each pair of children
# Since we don't have this information, we can use a uniform one for plotting
distance = np.arange(children.shape[0])
# The number of observations contained in each cluster level
no_of_observations = np.arange(2, children.shape[0]+2)
# Create linkage matrix and then plot the dendrogram
linkage_matrix = np.column_stack([children, distance, no_of_observations]).astype(float)
# Plot the corresponding dendrogram
dendrogram(linkage_matrix, **kwargs)
plt.title('Hierarchical Clustering Dendrogram')
plot_dendrogram(clustering, labels=clustering.labels_)
Elbow Method¶
In [72]:
from sklearn.cluster import KMeans
distortions = []
inertias = []
mapping1 = {}
mapping2 = {}
K = range(1,10)
X = iris[["petal_length", "petal_width"]]
for k in K:
# Building and fitting the model
kmeanModel = KMeans(n_clusters=k).fit(X)
distortions.append(sum(np.min(distance.cdist(X, kmeanModel.cluster_centers_,
'euclidean'),axis=1)) / X.shape[0])
inertias.append(kmeanModel.inertia_)
mapping1[k] = sum(np.min(distance.cdist(X, kmeanModel.cluster_centers_,
'euclidean'),axis=1)) / X.shape[0]
mapping2[k] = kmeanModel.inertia_
In [73]:
plt.plot(K, inertias, 'bx-')
plt.xlabel('Values of K')
plt.ylabel('Inertia')
plt.title('The Elbow Method using Inertia');
Silhouette Scores¶
In [74]:
X.loc[(X["petal_length"] < 3.2) & (X["petal_length"] > 2)]
Out[74]:
petal_length | petal_width | |
---|---|---|
98 | 3.0 | 1.1 |
In [75]:
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.cm as cm
fig, ax1 = plt.subplots(1, 1)
n_clusters = 2
# The 1st subplot is the silhouette plot.
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
cluster_labels = clustering.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--");
For n_clusters = 2 The average silhouette_score is : 0.7669465622893307
In [76]:
min(sample_silhouette_values)
Out[76]:
-0.13132990547983361
In [77]:
from sklearn.cluster import AgglomerativeClustering
clustering = AgglomerativeClustering(n_clusters = 3).fit(iris[["petal_length", "petal_width"]])
fig, ax1 = plt.subplots(1, 1)
n_clusters = 3
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
cluster_labels = clustering.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for the average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--");
For n_clusters = 3 The average silhouette_score is : 0.6573949270307473
In [78]:
min(sample_silhouette_values)
Out[78]:
-0.14062817006789816
In [79]:
iris["cluster"] = cluster_labels
current_palette = sns.color_palette()[0:3]
sns.scatterplot(data = iris, x = "petal_length", y= "petal_width", hue="cluster", palette = current_palette);
plt.axis('equal');