Spring 2023 Data C100/C200 Final Reference Sheet

Pandas

Suppose df is a DataFrame; s is a Series. import pandas as pd

Function Description

df[col] Returns the column labeled col from df as a Series.

df[[coll, col2]] Returns a DataFrame containing the columns labeled col1 and col2.

s.loc[rows] / df.loc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their index values.

s.iloc[rows] / df.iloclrows, cols] Returns a Series/DataFrame with rows (and columns) selected by their positions.
s.isnull() / df.isnull() Returns boolean Series/DataFrame identifying missing values

s.fillna(value) / df.fillna(value) Returns a Series/DataFrame where missing values are replaced by value

s.isin(values) / df.isin(values) Returns a Series/DataFrame of booleans indicating if each element is in values.
df.drop(labels, axis) Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)
df.rename(index=None, columns=None) Returns a DataFrame with renamed columns from a dictionary index and/or columns

df.sort_values(by, ascending=True) Returns a DataFrame where rows are sorted by the values in columns by

s.sort_values(ascending=True) Returns a sorted Series.
s.unique() Returns a NumPy array of the unique values
s.value_counts() Returns the number of times each unique value appears in a Series

pd.merge(left, right, how='inner', Returns a DataFrame joining left and right on the column labeled a; the join is of type inner
on='a')

left.merge(right, left_on=coll, Returns a DataFrame joining left and right on columns labeled col1 and col2.
right_on=col2)

df.pivot_table(index, columns, Returns a DataFrame pivot table where columns are unique values from columns (column name or list),
values=None, aggfunc='mean"') and rows are unique values from index (column name or list); cells are collected values using aggfunc. If
values is not provided, cells are collected for each remaining column with multi-level column indexing.

df.set_index(col) Returns a DataFrame that uses the values in the column labeled col as the row index.

df.reset_index() Returns a DataFrame that has row index 0, 1, etc., and adds the current index as a column.

Let grouped = df.groupby(by) where by can be a column label or a list of labels.

Function Description
grouped.count() Return a Series containing the size of each group, excluding missing values
grouped.size() Return a Series containing size of each group, including missing values

grouped.mean()/.min()/.max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values

grouped. filter(f) Filters or aggregates using the given function f
grouped.agg(f)

Function Description
s.str.len() Returns a Series containing length of each string
s.strla:b] Returns a Series where each element is a slice of the corresponding string indexed from a (inclusive,

optional) to b (non-inclusive, optional)

s.str.lower()/s.str.upper() Returns a Series of lowercase/uppercase versions of each string

s.str.replace(pat, repl) Returns a Series that replaces occurences of substrings matching the regex pat with string repl
s.str.contains(pat) Returns a boolean Series indicating if a substring matching the regex pat is contained in each string
s.str.extract(pat) Returns a Series of the first subsequence of each string that matches the regex pat. If pat contains one

group, then only the substring matching the group is extracted

Visualization

Matplotlib: x and y are sequences of values. import matplotlib.pyplot as plt Tukey-Mosteller Bulge Diagram.

Function

plt.plot(x, y)
plt.scatter(x, y)
plt.hist(x, bins=None)

plt.bar(x, height)

Description

height

Creates a line plot of x against y ?/
log X 2

Creates a scatter plot of x against y
Creates a histogram of x; bins can be an integer or a sequence

Creates a bar plot of categories x and corresponding heights

Y3,Y?2

Vx X

W, logY

Seaborn: x and y are column names in a DataFrame data. import seaborn as sns

Function

sns.countplot(data, x)

sns.histplot(data, x, stat='count', kde=False)

sns.displot(x, data, stat='count', rug=True, kde=True)

sns.rugplot(data, x)

sns.boxplot(data, x=None, y)

sns.violinplot(data, x=None, y)

sns.scatterplot(data, x, y)

sns. lmplot(x, y, data, fit_reg=True)

sns.jointplot(x, y, data, kind)

Regular Expressions

Operator

\d, \w, \s

\D, \W, \S

{m}

{m, n}

Description
Create a barplot of value counts of variable x from data

Creates a histogram of x from data, where bin statistics stat is one of 'count’,
'frequency', 'probability’, 'percent', and 'density'; optionally overlay a kernel
density estimator. displot is similar but can optionally overlay a rug plot

Adds a rug plot on the x-axis of variable x from data

Create a boxplot of y, optionally factoring by categorical x, from data. violinplot is
similar but also draws a kernel density estimator of y

Create a scatterplot of x versus y from data

Create a scatterplot of x versus y from data, and by default overlay a least-squares
regression line

Combine a bivariate scatterplot of x versus y from data, with univariate density plots
of each variable overlaid on the axes; kind determines the visualization type for the
distribution plot, can be scatter, kde or hist

Description Operator Description

Matches any character except \n * Matches preceding character/group zero or more times
Escapes metacharacters ? Matches preceding character/group zero or one times
Matches expression on either side of expression; has + Matches preceding character/group one or more times
lowest priority of any operator

Predefined character group of digits (0-9), alphanumerics *, $ Matches the beginning and end of the line, respectively
(a-z, A-Z, 0-9, and underscore), or whitespace,

respectively

Inverse sets of \d, \w, \s, respectively () Capturing group used to create a sub-expression
Matches preceding character/group exactly m times [1] Character class used to match any of the specified

characters or range (e.g. [abcde] is equivalent to [a-e])

Matches preceding character/group at least m times and at [~] Invert character class; e.g. [*a-c] matches all characters
most n times. If either m or n are omitted, set lower/upper except a, b, ¢

bounds to 0 and oo, respectively

Modified lecture example for capture groups:

import re

lines = '169.237.46.168 - — [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"'
re.findall(r'\ [\d+\/ (\w+)\/\d+:\d+:\d+:\d+ .+\]', line) # returns ['Jan']

Function Description

re.match(pattern, string) Returns a match if zero or more characters at beginning of string matches pattern, else None

re.search(pattern, string) Returns a match if zero or more characters anywhere in string matches pattern, else None

re.findall(pattern, string) Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)

re.sub(pattern, repl, string) Returns string after replacing all occurrences of pattern with repl

Modeling

Concept

Variance, o2

Formula

%12”;(% - z)?

Concept

Correlation r

n — —
i 1 in—x Yi— Y
ni< o o

Formula

y
L1 loss) R Linear regression estimate)
Li(y,9) =ly—19 | ofy 9 =00+ b1z
Ly loss . . Least squares linear .
La(y,9) = (y —) regression Op=79— 0, 0, =r—L
Og

Empirical risk with loss L

Ordinary Least Squares

Multiple Linear Regression Model: Y = X6 with design matrix X, response vector Y, and predicted vector Y. If there are p features plus

a biasfintercept, then the vector of parameters 6 = [0, 61, . . ., Hp]T € RP+1. The vector of estimates 6 is obtained from fitting the

model to the sample (X, Y).

Concept

Formula

Concept Formula
Mean squared error R(0) = L||Y — X6 |2 Normal equation .
xTx0 = xTy
Least squares estimate, Residual vector, e e=Y—-Y

if X'is full rank

Ridge Regression
L2 Regularization

Ridge regression estimate
(closed form)

LASSO Regression
L1 Regularization

6= (XTX) X7y

=Y —X6|13 + 6]13
Origge = (XTX + nal) 'XTY

w Y — X6/ + al6]x

Multiple R?
(coefficient of
determination)

Squared L2 Norm of € R?

L1 Norm of § € R?

R? =

variance of fitted values

variance of y

1613 =329, 62

16111 = 325, 1651

Scikit-Learn

Package: sklearn.linear_model

Linear Logistic

Regression Regression Function(s)

v - LinearRegression(fit_intercept=True)

- v LogisticRegression(fit_intercept=True,
penalty="12', C=1.0)

v - LassoCV(), RidgeCV()

V4 v model.fit(X, vy)
model.predict(X)
model.predict_proba(X)

v v model. coef_

v v model.intercept_

Package: sklearn.model_selection
Function

train_test_split(xarrays, test_size=0.2)

Probability

Description
Returns an ordinary least squares Linear Regression model.

Returns an ordinary least squares Linear Regression model.
Hyperparameter C is inverse of regularization parameter, C = 1/A.

Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear
model, respectively, and picks the best model by cross validation.

Fits the scikit-learn mode1 to the provided X and y.
Returns predictions for the X passed in according to the fitted model.

Returns predicted probabilities for the X passed in according to the fitted
model. If binary classes, will return probabilities for both class 0 and 1.

Estimated coefficients for the linear model, not including the intercept
term.

Bias/intercept term of the linear model. Set to 0.0 if
fit_intercept=False.

Description

Returns two random subsets of each array passed in, with 0.8 of the array
in the first subset and 0.2 in the second subset.

Let X have a discrete probability distribution P(X = z). X has expectation E[X] = Y 2 P(X =) over all possible values z,
variance Var(X) = E[(X — E[X])?], and standard deviation SD(X) = 1/ Var(X).

The covariance of two random variables X and Y is E[(X — E[X])(Y — E[Y])]. If X and Y are independent, then Cov(X,Y’) = 0.

Notes

X is a random variable.

X is arandom variable, a,b € R are
scalars.

X, Y are random variables.

X is a Bernoulli random variable that

takes on value 1 with probability p
and 0 otherwise.

EX]=p

Central Limit Theorem

Let (X1,. ..

n

Property of Expectation

ElaX +b] = aE[X] + b

E[X + Y] = E[X] + E[Y]

Property of Variance

Var(X) = E[X?] — (E[X])?

Var(aX + b) = a*Var(X)

Var(X +Y) = Var(X) 4+ Var(Y) + 2Cov(X,Y)

Var(X) = p(1 - p)

,Xn) be a sample of independent and identically distributed random variables drawn from a population with mean p and

standard deviation ¢. The sample mean X, = 3 X; is normally distributed, where E[X ;] = y and SD(X,,) = o/+/n.

i=1

Parameter Estimation and Gradient Descent

Parameter Estimation

Suppose for each individual with fixed input x, we observe a random response Y = g(a:) =+ €, where g is the true relationship and € is

random noise with zero mean and variance o2.

For a new individual with fixed input x, define our random prediction ?(:B) based on a model fit to our observed sample (X, Y). The

. R . 2 R
model risk is the mean squared prediction error between Y and Y (z): E[(Y — Y (z))?] = o2 + (]E[Y(x)] - g(m)) + Var(Y(z)).

Suppose that input has p features and the true relationship g is linear with parameter 6 € RP*L. Then
Y = fo(z) = 6y + Z?:l jz; +eandY = f;(z) for an estimate 6 fit to the observed sample (X, Y).

Gradient Descent

Let L(G, X, Y) be an objective function to minimize over 8, with some optimal é Suppose 0 is some starting estimate att = 0, and
6 is the estimate at step ¢. Then for a learning rate o, the gradient update step to compute #(+1) is (1) = 9) — oV, L(A1), X, Y),
where VgL(H(t), X, Y) is the partial derivative/gradient of L with respect to 6, evaluated at 0.

SQL

SQLite syntax:

SELECT [DISTINCT]
{* | expr [[AS] c_alias]
{,expr [[AS] c_alias] ...}}
FROM tableref {, tableref}
[[INNER | LEFT] JOIN table_name
ON qualification_list]
[WHERE search_condition]
[GROUP BY colname {,colname...}]
[HAVING search_condition]
[ORDER BY column_list]
[LIMIT number]
[OFFSET number of rows];

Syntax

SELECT column_expression_list

FROM s INNER JOIN t ON cond
FROM s LEFT JOIN t ON cond
FROM s, t

WHERE a IN cons_list

ORDER BY RANDOM LIMIT n
ORDER BY a, b DESC

CASE WHEN pred THEN cons ELSE alt END

WHERE s.a LIKE 'p'

LIMIT number

OFFSET number

Description

List is comma-separated. Column expressions may include aggregation functions (MAX,
FIRST, COUNT, etc). AS renames columns. DISTINCT selects only unigue rows.

Inner join tables s and t using cond to filter rows; the INNER keyword is optional.
Left outer join of tables s and t using cond to filter rows.

Cross join of tables s and t: all pairs of a row from s and a row from t

Select rows for which the value in column a is among the values in a cons_list.
Draw a simple random sample of n rows.

Order by column a (ascending by default) , then b (descending).

Evaluates to cons if pred is true and alt otherwise. Multiple WHEN/THEN pairs can be
included, and ELSE is optional.

Matches each entry in the column a of table s to the text pattern p. The wildcard %
matches at least zero characters.

Keep only the first number rows in the return result.

Skip the first number rows in the return result.

Principal Component Analysis (PCA)

The i-th Principal Component of the matrix X is defined as the i-th column of U defined by Singular Value Decomposition (SVD).

X =UXVTisthe SVD of X if U and VT are matrices with orthonormal columns and X is a diagonal matrix. The diagonal entries of X,
[s1,...,8r,0,...,0], are known as singular values of X, where s; > s; for i < jand r = rank(X).

Define the design matrix X € R"*P. Define the total variance of X as the sum of individual variances of the p features. The amount of
variance captured by the i-th principal component is equivalent to s?/n, where n is the number of datapoints.

Syntax Description

np.linalg.svd(X, full_matrices = True) SVD of X with shape (M, N) that returns u, s, vt, where s is
a 1D array of X's singular values. If full_matrices=True, u
and vt have shapes (M, M) and (N, N) respectively;
otherwise shapes are (M, K) and (K, N), respectively,
where K = min(M, N).

Classification and Logistic Regression

Confusion Matrix Classification Performance
Columns are the predicted values g and rows are the actual classes y. Suppose you predict n datapoints.
y=0 y=1 Metric Formula Other Names
y = 0 True negative (TN) False Positive (FP) Accuracy @
y = 1 False negative (FN) True Positive (TP) Precision %
Recall/TPR Tpiﬁ True Positive Rate, Sensitivity
FPR % False Positive Rate, Specificity

An ROC curve visualizes TPR vs. FPR for different thresholds T'.

Logistic Regression Model: For input feature vector , Py(Y = 1|z) = o(276), where o(2) = 1/(1 + e~*). The estimate 0 is the
parameter 6 that minimizes the average cross-entropy loss on training data. For a single datapoint, define cross-entropy loss as
— [ylog(p) + (1 — y) log(1 — p)], where p is the probability that the response is 1.

Logistic Regression Classifier: For a given input = and trained logistic regression model with parameter , compute

p = P(Y = 1|z) = o(z76). predict response § with classification threshold T as follows:

1 p>T

g = classify(z) = {0 otherwise

Clustering

K-Means Clustering: Pick an arbitrary k, and randomly place k “centers” each a different color. Then repeat until convergence:

1. Color points according to the closest center (defined as squared distance).
2. Move center for each color to center of points with that color.

K-Means minimizes inertia, defined as the sum of squared distances from each datapoint to its center.

Agglomerative Clustering: Assign each datapoint to its own cluster. Then, recursively merge pairs of clusters together until there are k
clusters remaining.

A datapoint's silhouette score S is defined as S = (B — A)/ max (A, B), where A is the mean distance to other points in its cluster,
and B is the mean distance to points in its closest cluster.

