Spring 2022 Data C100/C200 Midterm 2 Reference Sheet

Ordinary Least Squares

Multiple Linear Regression Model: $\hat{\mathbb{Y}}=\mathbb{X} \theta$ with design matrix \mathbb{X}, response vector \mathbb{Y}, and predicted vector $\hat{\mathbb{Y}}$. If there are p features plus a bias/intercept, then the vector of parameters $\theta=\left[\theta_{0}, \theta_{1}, \ldots, \theta_{p}\right]^{T} \in \mathbb{R}^{p+1}$. The vector of estimates $\hat{\theta}$ is obtained from fitting the model to the sample (\mathbb{X}, \mathbb{Y}).

Concept	Formula	Concept	Formula		
Mean squared error	$R(\theta)=\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\|_{2}^{2}$	Normal equation	$\mathbb{X}^{T} \mathbb{X} \hat{\theta}=\mathbb{X}^{T} \mathbb{Y}$		
Least squares estimate, if \mathbb{X} is full rank	$\hat{\theta}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{Y}$	Residual vector, e	$e=\mathbb{Y}-\hat{\mathbb{Y}}$		

	Multiple R^{2} (coefficient of determination)	$R^{2}=\frac{\text { variance of fitted values }}{\text { variance of } y}$								
Ridge Regression L2 Regularization	$\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\|_{2}^{2}+\alpha\\|\theta\\|_{2}^{2}$	Squared L2 Norm of $\theta \in \mathbb{R}^{d}$	$\\|\theta\\|_{2}^{2}=\sum_{j=1}^{d} \theta_{j}^{2}$							
Ridge regression estimate (closed form)	$\hat{\theta}_{\text {ridge }}=\left(\mathbb{X}^{T} \mathbb{X}+n \alpha I\right)^{-1} \mathbb{X}^{T} \mathbb{Y}$									
LASSO Regression L1 Regularization	$\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\|_{2}^{2}+\alpha\\|\theta\\|_{1}$	L1 Norm of $\theta \in \mathbb{R}^{d}$	$\\|\theta\\| \\|_{1}=\sum_{j=1}^{d}\left\|\theta_{j}\right\|$							

Scikit-Learn
Suppose sklearn.model_selection and sklearn. linear_model are both imported packages.

Package	Function(s)	Description
sklearn.linear_model	LinearRegression(fit_intercept=True)	Returns an ordinary least squares Linear Regression model.
	```LassoCV(fit_intercept=True), RidgeCV(fit_intercept=True)```	Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model, respectively, and picks the best model by cross validation.
	model.fit(X, y)	Fits the scikit-learn model to the provided X and y .
	model.predict(X)	Returns predictions for the X passed in according to the fitted model.
	model.coef_	Estimated coefficients for the linear model, not including the intercept term.
	model.intercept_	Bias/intercept term of the linear model. Set to 0.0 if fit_intercept=False.
sklearn.model_selection	```train_test_split(*arrays, test_size=0.2)```	Returns two random subsets of each array passed in, with 0.8 of the array in the first subset and 0.2 in the second subset.

## Probability

Let $X$ have a discrete probability distribution $P(X=x)$. $X$ has expectation $\mathbb{E}[X]=\sum_{x} x P(X=x)$ over all possible values $x$, variance $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$, and standard deviation $\operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}$.

The covariance of two random variables $X$ and $Y$ is $\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$. If $X$ and $Y$ are independent, then $\operatorname{Cov}(X, Y)=0$.

Notes	Property of Expectation	Property of Variance
$X$ is a random variable.	$\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$	$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$
$X$ is a random variable. $a, b \in \mathbb{R}$ are   scalars.	$\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$	$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}$
$X, Y$ are random variables.	$\mathbb{E}[X]=p$	$\operatorname{Var}(X)=p(1-p)$
$X$ is a Bernoulli random variable that   takes on value 1 with probability $p$   and 0 otherwise.	$E[Y]=n p$	
$Y$ is a Binomial random variable		$\operatorname{Var}(Y)=n p(1-p)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$

## Central Limit Theorem

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a sample of independent and identically distributed random variables drawn from a population with mean $\mu$ and standard deviation $\sigma$. The sample mean $\bar{X}_{n}=\sum_{i=1}^{n} X_{i}$ is normally distributed, where $\mathbb{E}\left[\bar{X}_{n}\right]=\mu$ and $\operatorname{SD}\left(\bar{X}_{n}\right)=\sigma / \sqrt{n}$.

Parameter Estimation
Suppose for each individual with fixed input $x$, we observe a random response $Y=g(x)+\epsilon$, where $g$ is the true relationship and $\epsilon$ is random noise with zero mean and variance $\sigma^{2}$.

For a new individual with fixed input $x$, define our random prediction $\hat{Y}(x)$ based on a model fit to our observed sample ( $\mathbb{X}, \mathbb{Y})$. The model risk is the mean squared prediction error between $Y$ and $\hat{Y}(x)$ :

$$
\mathbb{E}\left[(Y-\hat{Y}(x))^{2}\right]=\sigma^{2}+(\mathbb{E}[\hat{Y}(x)]-g(x))^{2}+\operatorname{Var}(\hat{Y}(x))
$$

Suppose that input $x$ has $p$ features and the true relationship $g$ is linear with parameter $\theta \in \mathbb{R}^{p+1}$. Then $Y=f_{\theta}(x)=\theta_{0}+\sum_{j=1}^{p} \theta_{j} x_{j}+\epsilon$ and $\hat{Y}=f_{\hat{\theta}}(x)$ for an estimate $\hat{\theta}$ fit to the observed sample $(\mathbb{X}, \mathbb{Y})$.

## Gradient Descent

Let $L(\theta, \mathbb{X}, \mathbb{Y})$ be an objective function to minimize over $\theta$, with some optimal $\hat{\theta}$. Suppose $\theta^{(0)}$ is some starting estimate at $t=0$, and $\theta^{(t)}$ is the estimate at step $t$. Then for a learning rate $\alpha$, the gradient update step to compute $\theta^{(t+1)}$ is

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha \nabla_{\theta} L\left(\theta^{(t)}, \mathbb{X}, \mathbb{Y}\right),
$$

where $\nabla_{\theta} L\left(\theta^{(t)}, \mathbb{X}, \mathbb{Y}\right)$ is the partial derivative/gradient of $L$ with respect to $\theta$, evaluated at $\theta^{(t)}$.

## SQL

SQLite syntax:

## SELECT [DISTINCT]

\{* | expr [[AS] c_alias]
\{,expr [[AS] c_alias] ...\}\}
FROM tableref \{, tableref\}
[[INNER | LEFT ] JOIN table_name
ON qualification_list]
[WHERE search_condition]
[GROUP BY colname \{,colname...\}]
[HAVING search_condition]
[ORDER BY column_list]
[LIMIT number]
[OFFSET number of rows];

Syntax	Description
SELECT   column_expression_list	List is comma-separated. Column expressions may include   aggregation functions (MAX, FIRST, COUNT, etc). AS renames   columns. DISTINCT selects only unique rows.
FROM s INNER JOIN t ON cond	Inner join tables $s$ and $t$ using cond to filter rows; the INNER   keyword is optional.
FROM s LEFT JOIN t ON cond	Left outer join of tables s and $t$ using cond to filter rows.
FROM s, t	Cross join of tables $s$ and $t$ : all pairs of a row from s and a row   from $t$
WHERE a IN cons_list	Select rows for which the value in column a is among the values   in a cons_list.
ORDER BY RANDOM LIMIT n	Draw a simple random sample of $n$ rows.
ORDER BY a, b DESC	Order by column a (ascending by default), then b (descending).
CASE WHEN pred THEN cons	Evaluates to cons if pred is true and alt otherwise. Multiple   WHEN/THEN pairs can be included, and ELSE is optional.
WLSE alt END	Matches each entry in the column a of table s to the text   pattern $p$. The wildcard \% matches at least zero characters.
Keep only the first number rows in the return result.	

