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Email: @berkeley.edu
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Instructions:
This midterm exam consists of 60 points spread out over 5 questions and the Honor Code
and must be completed in the 110 minute time period ending at 9:00 PM, unless you have
accommodations supported by a DSP letter.

Note that some questions have circular bubbles to select a choice. This means that you
should only select one choice. Other questions have boxes. This means you should select
all that apply. Please shade in the box/circle to mark your answer.
You must also write your Student ID at the top each page.

Honor Code [1 Pts]:
As a member of the UC Berkeley community, I act with honesty, integrity, and respect for
others. I am the person whose name is on the exam and I completed this exam in accordance
with the Honor Code.

Signature:
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1 Monopoly Mistakes [15 Pts]

It’s the annual Monopoly World Championship! The finalists: Shawn, Amanda, Neil, and Annie
are playing Monopoly, a board game where players pay a price to buy properties, which can then
generate income for them. Each property can be owned by only one player at a time. At the end of
the game, the player with the most money wins.

Shawn wants to figure out which properties are most worth buying. He creates a DataFrame
income with data on the current game state, shown on the left. He also finds a DataFrame
properties with data on Monopoly properties, shown on the right.

Both tables have 28 rows. For brevity, only the first few rows of each DataFrame are shown.

income properties

• Player is the name of the player,
as a str.

• Property is a property currently
owned by the player, as a str.

• Income Generated is the
amount of income a player has
earned from that property so far, as
a str.

• Property is the name of the
property, as a str. There are 28
unique properties.

• Property Color is a color
group that the property belongs to,
as a str. There are 10 unique color
groups, and each property belongs
to a single group.

• Purchase Price is the price to
buy the property, as a float.

Note: For properties that are not currently owned by any player, the Player and Income Generated
columns in the income table have a NaN value.
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(a) [1 Pt] What is the granularity of the income table?

Solution:
Property

(b) [2 Pts] Which of the following line(s) of code successfully returns a Series with the number
of properties each player owns? Select all that apply.

□ income.groupby('Player').agg(pd.value_counts)

□ income['Player'].value_counts()

□ income['Player', 'Property'].groupby('Player').size()

□ income.groupby('Player').size()

Solution: Option A is wrong because it returns a DataFrame with multiple columns.
Options B and D are correct.
Option C will error because we attempt to select two column names with a single indexing
operator, which will error.

(c) [5 Pts] He now decides to calculate the amount of profit from each property. He wants to
store this in a column called Profit in the income DataFrame.

i. [2 Pts] To do this, he first has to transform the Income Generated column to be of a
float datatype. Write one line of code to replace the old column with a new column, also
called Income Generated, with the datatype modification described above. You may
assume that each entry in Income Generated consists of a dollar sign ($) followed
by a number, except for the NaN values.

Solution:
income['Income Generated'] = income['Income Generated']
.str[1:].astype(float)
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ii. [3 Pts] Assuming that the answer to the last sub-part is correct, let’s add a Profit
column to the income DataFrame. Fill in the following blanks to do this, and please
add arguments to function calls as you see appropriate.
Note: Profit is calculated by subtracting the purchase price from generated income.

combined_df = income.___A___(_____________B_____________)
income["Profit"] = _________________C__________________

α) [1 Pt] What goes in the blank indicated by the letter A?

β) [1 Pt] What goes in the blank indicated by the letter B?

γ) [1 Pt] What goes in the blank indicated by the letter C?

Solution:
combined_df = income.merge(properties, on = "Property")
income["Profit"] = combined_df["Income Generated"]
- combined_df["Purchase Price"]

(d) [2 Pts] Regardless of your answer to the previous sub-part, assume we’ve successfully created
the Profit column. Let’s help Shawn see how well he’s doing by finding the average profit
he’s made on the properties he owns. Which of the following line(s) of code does this? Select
all that apply.

□ income.groupby("Player")["Shawn"].agg(np.average)

□ income[income["Player"]=="Shawn"]["Profit"].mean()

□ income.loc[income["Player"]=="Shawn", "Profit"].mean()

□ income.iloc[income["Player"]=="Shawn", "Profit"].mean()
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(e) [5 Pts] Oh no! He realizes he’s lost more money than he’s made. To solve this problem, he be-
gins by writing some Pandas code to merge the Property Color column into the income
DataFrame and drops all rows with NaN values. He calls this DataFrame merged_df.
Shown below are the first few rows.

merged df

Shawn decides he will now only buy properties from a color group that he deems “profitable.”
He deems a color group “profitable” if at least 50% of the properties in the group that are
currently owned by players have made a positive (non-zero) profit for those players.

Fill in the following lines of code to help him display a DataFrame with a subset of the rows
in merged df: the rows with properties that belong to profitable color groups. Your solution
may use fewer lines of code than we provide.

def func(group):

____________________________________________________

____________________________________________________

____________________________________________________

____________________________________________________

merged_df.______________________________________________

Solution:
def func(group):
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if sum(group['Profit'] > 0)/len(group['Profit'])>=0.5:
return True

return False

merged_df.groupby("Color Group").filter(func)
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2 Dungeons and Data [13 Pts]

Grog the ogre owns a drugstore near the village of Slimestone. One day, in a local dungeon, he
discovers an ancient recipe for a health potion.

To test the recipe, Grog heads into Slimestone to find the first 50 villagers he sees, knocks them
out with his club, and drags them back to his lair. Each of them sustains a large amount of damage
from the club, as measured in “health points” (HP). Grog gives each of them a free sample of his
new potion and observes how many HP are restored. He records various attributes about each study
participant, as well as the number of HP that were restored by his potion.

age species str dex con int wis cha restored
0 22 human 15 14 12 13 9 11 6
1 25 dwarf 19 14 18 8 9 12 13
3 36 human 13 9 13 7 19 17 10
... ... ... ... ... ... ... ... ... ...
48 121 gnome 17 10 25 16 13 21 9
49 372 elf 9 24 12 16 18 12 8

Data for Grog’s experiment

The variables are:

• age: in years, an int.

• species: dwarf, elf, gnome, or human, stored as a str.

• str, dex, con, int, wis, cha: strength, dexterity, constitution, intelligence, wisdom,
and charisma. Each is a number is an int between 1 and 30. For this problem, it doesn’t
matter what they mean.

• restored: the amount of HP restored by the potion (response variable), an int.

Grog wants to figure out about how many health points are usually restored, and also use regression
modeling to figure out whether some types of villagers can expect to gain more from the potion
than others.
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(a) [1 Pt] Grog’s sampling frame is the set of all villagers in Slimestone. Which of the following
are true about the sample that Grog gets? Select all that apply.

□ It is a convenience sample
□ It is a probability sample

□ It is a simple random sample

□ It is a random sample with replacement

□ We can be reasonably confident that the sample is representative of the sampling
frame

(b) [1 Pt] Grog’s first idea is to use a constant model to predict restored. He decides to
minimize the MSE. What will be the optimal constant prediction?

⃝ The maximum of the restored column

⃝ The minimum of the restored column

⃝ The mean of the restored column
⃝ The median of the restored column

⃝ The mode of the restored column

(c) [1 Pt] What type of variable is the species column?

⃝ Qualitative, ordinal

⃝ Quantitative, continuous

⃝ Qualitative, nominal
⃝ Quantitative, discrete

(d) [2 Pts] Grog wants to run a multiple linear regression to predict the response, restored,
from all the other variables, calculating the optimal parameters using the formula

θ̂ = (XTX)−1XTY,

where Y is the column vector (or 50 × 1 matrix) of responses, and X is a 50 × d matrix of
numerical features. He needs to do something about the variable species, which is currently
represented as str instead of a numerical value. He plans to use one-hot encoding. Which of
the following could describe a correct implementation of one-hot encoding for species?
Select all that apply, remembering that the species are dwarf, elf, gnome, and human.

□ Grog adds four columns representing the one-hot encoding of the species col-
umn, along with a bias column of all ones

□ Grog adds four columns representing the one-hot encoding of the species
column, and does not include a bias column of all ones

□ Grog adds three columns representing the one-hot encoding of the species
column, along with a bias column of all ones

□ Each column that Grog adds to the matrix has a single entry equal to 1, and the
other 49 entries in the column are all 0.
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(e) [1 Pt] Grog writes a Python script to implement OLS linear regression from scratch, and uses
it to run a regression with the full data set of 50 observations, using all of the other variables
to predict the response restored.

He checks the MSE for his model’s predictions, and he finds that it is even higher than the
MSE for the constant model from part (b). Which of the following do you think is the best
explanation for what happened?
Note: You may assume for this part that the XTX matrix is invertible.

⃝ He probably overfit the data, and that might be why he got such a high MSE.

⃝ He probably underfit the data, and he needs to add more features to the regression
until his MSE goes down.

⃝ This should never happen with a correctly implemented OLS method. He must
have a bug in his code.

Solution: Option A: Grog uses the full data set to train both models and computed the
MSE on the same data, so even if he is overfitting, we wouldn’t know based on the training
MSE.

Option B: The constant model is the simplest model there is; any OLS linear regression
model would be more complex (and thus less underfitting) than the constant model. This
also does not explain why the MSE for the OLS model is higher.

(f) [3 Pts] Grog is still a little confused about what happened in part (e) but he has heard that
when you have a lot of predictor variables, you might want to consider using regularization,
such as the LASSO or Ridge regression, still using the MSE loss. Which of the following
considerations might be a reason to prefer LASSO? Select all that apply.

□ LASSO is more likely than ridge to give an answer with most coefficients set to
0, which might make the final prediction equation a little easier to understand.

□ Because LASSO uses L1 instead of L2, the LASSO solution θ̂ will not be affected
much by outlier data points, even if they are extreme outliers.

□ LASSO regression has a closed form solution but Ridge regression does not.

Solution: Option A: We talked about this in class and section. LASSO has the tendency
to set many values to 0.

Option B: LASSO uses L1 for the regularization term, but the loss function is still squared
loss ((yi − ŷi)

2). Thus, LASSO will also be affected by outlier data points.

Option C: Ridge has a closed form solution, LASSO doesn’t.

(g) [2 Pts] Grog decides to use Ridge regression instead, and wants to use 5-fold cross-validation
to select the hyperparameter. He takes his folds to be contiguous blocks, using the rows 0 to
9 for the first fold, 10 to 19 for the second, and so on.
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He notices that his data set is sorted by age, the first column, so the villagers in the first fold
are much younger than the ones in the last fold. Which of the following ideas would allow
him to resolve this problem and keep it from affecting the results? Select all that apply.

□ Don’t use age as a predictor variable in the regression

□ Re-sort the data, in increasing order of the variable restored, and then use con-
tiguous blocks for his folds

□ Shuffle the rows of the data frame randomly, and then use contiguous blocks
for his folds

□ There is nothing he can do to fix it, he just needs to start over and collect a new data
set
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(h) [2 Pts] Assume Grog has fixed the issue from the previous part to his satisfaction, and he now
has 5 folds that he is happy with. He uses 5-fold cross-validation to decide on the hyperpa-
rameter Q to use as the maximum squared L2 norm for the parameters. That is, any particular
choice of Q means minimizing MSE(θ) such that

∑d
j=1 θ

2
j ≤ Q.

Grog does 5-fold cross-validation to evaluate a grid of 100 different values for Q ranging all
the way from tiny values to enormous values of Q. He is surprised to find that, as Q gets
larger and larger, the cross-validation MSE stops changing, so the top 13 values of Q all give
exactly the same cross-validation estimate of MSE. What do you think could best explain
this?

⃝ Above a certain value of Q, he is overfitting so much that he is making an exactly
correct prediction for every single training point, and once he reaches this point he
can’t overfit any more.

⃝ Above a certain value of Q, his answer is very close to the constant model, so the
predictions are virtually identical.

⃝ Above a certain value of Q, his predictions will coincide exactly with the pre-
dictions for OLS linear regression.

⃝ Above a certain value of Q, his optimization algorithm is not able to converge to
the optimal parameters.

⃝ Above a certain value of Q, the optimal parameters are so large that numerical
overflow will make the calculation fail.

Solution: Recall from lecture that Q is the radius of the ball that we restrict our coef-
ficients in. It is inversely related to the α regularization parameter we use in the other
formulation or sklearn.

As Q gets larger, the ball gets bigger and the restrictions get looser; and at one point the
ball will include the OLS solution and we will have no regularization at all.
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3 Beaver Bedtimes [9 Pts]

Brenda Beaver is building a dam, and she has been waking up earlier and earlier in the morning
trying to build it faster. However, her friend Olivia Otter thinks Brenda is overworking herself, and
that her dam production is suffering as a result.

To convince Brenda to get more sleep, Olivia created a DataFrame called production, shown
below, with one row for each of the 31 days in the last month. For each day, Olivia recorded the
amount of sleep Brenda got (in hours) and how many branches Brenda was able to add to her dam
on that day. The first five rows of the DataFrame look like the left figure below:

production

Olivia’s scatter plot

(a) [2 Pts] To help Olivia visualize this dataset, write one line of code to create a scatter plot
of the two variables, with Sleep on the horizontal axis and Branches on the vertical axis.
The scatter plot should also show a least-squares regression line and look similar to the plot
above on the right.

import seaborn as sns
import matplotlib.pyplot as plt
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Solution:
sns.lmplot(x = "Sleep",
y = "Branches",
data = production, fit_reg = True)
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(b) [2 Pts] Olivia wants to know how the linear model performs on the data set. She calls the
Sleep column x to remind herself it is the predictor variable, and calls the Branches
column y to remind herself it is the response variable. Looking at the regression line from (a),
fill in the blanks by selecting the appropriate choices.
For small values of x, our linear model tends to _______(1)_______, y, and for large
values of x, our linear model tends to _______(2)_______ y.

(1)
⃝ Underpredict

⃝ Overpredict
(2)

⃝ Underpredict

⃝ Overpredict

Solution: We ended up giving everyone points for the second blank because it can be
argued that the ”large values” are from 6 to 8, where the number of points above and
below the lines are the same.

(c) [1 Pt] Olivia makes some more visualizations to evaluate the linear model. She makes a plot
of the residuals y− ŷ on the vertical axis against the predictor x on the horizontal axis. Which
of the plots below best matches her plot?

A B

C D
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⃝ A

⃝ B
⃝ C

⃝ D

(d) [1 Pt] Olivia is thinking about using a transformation to make her model fit better. Which one
transformation, from the following options, do you think is most likely to improve the fit?

⃝ Change the response variable to log(Branches)

⃝ Change the predictor variable to log(Sleep)

⃝ Change the response variable to Branches2

⃝ Change the predictor variable to 60× Sleep (so sleep is measured in minutes)

Solution: The shape of the scatter plot resembles the bottom right of the Tukey-Mosteller
Bulge Diagram, so we can apply any of the four transformations indicated there:

√
y,

log(y), x2, or x3. The only option that fits is A.

(e) [2 Pts] Regardless of what you chose before, assume that Olivia comes to believe that the
logarithms of x (Sleep) and y (Branches) are related, so she should actually use the pre-
diction function

fθ(x) = θ0 + θ1 log(x),

where fθ(x) is the predicted value for log(y) (both logarithms are base e).

What is the prediction for y as a function of x, in terms of θ0 and θ1?

⃝ ŷ = eθ0 + xθ1

⃝ ŷ = eθ0 · xθ1

⃝ ŷ = eθ0 · θ1x
⃝ ŷ = eθ0 · (θ1)x

⃝ ŷ = eθ0 + (θ1)
x

Solution: We have
log(y) = θ0 + θ1 log(x)

Raising e to the power of both sides:

elog(y) = eθ0+θ1 log(x)

y = eθ0 · eθ1 log(x)

y = eθ0 · elog(xθ1 )

y = eθ0 · xθ1 .
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(f) [1 Pt] Olivia wants to take a closer look at the distribution of y, the Branches column.
Which of the Kernel Density Plots best matches the distribution of y?

A B

C D

⃝ A

⃝ B

⃝ C
⃝ D
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4 Booo-ba [11 Pts]

Casper, a ghost who loves milk tea boba, and Winnie, a witch who loves fruit tea boba, are partners
in UC Berkeley’s Boo 100 class. As a part of their class, they must conduct a research project that
addresses some question they have about the UC Berkeley student population.

They are interested in whether UC Berkeley students prefer milk tea boba or fruit tea boba. They
decide to collect a sample by publicly posting a poll on Reddit, an anonymous online forum that
anyone can visit. Winnie posts the following question for the people on the forum to respond to:

After responding to the poll, users may optionally leave a comment, and other users can optionally
give the comment “upvotes” or “downvotes” depending on whether they like or dislike the com-
ment. Casper and Winnie store the data from their Reddit poll in a DataFrame, responses. For
brevity, only the first few rows of the DataFrame are shown.

responses

The Comment column has a text string in three parts: the commenter’s user name in the format
u/username, the actual comment in single quotes, and the “net vote,” upvotes minus downvotes,
the comment got (so 5 upvotes and 7 downvotes results in "vote: -2" at the end). 30% of
respondents did not comment, and have a value of None in the Comment column.
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Note on edge cases: For all parts of this question dealing with regular expressions, you don’t
need to consider any edge cases beyond the example comments shown in the first six rows of
responses. As long as your regex pattern works on the Comment strings shown in the DataFrame,
and it is not trivializing the problem, you will get full credit.

(a) [1 Pt] What is their population of interest?

⃝ All students in Boo 100

⃝ All students at UC Berkeley
⃝ All students at UC Berkeley on Reddit

⃝ All people on Reddit

(b) [1 Pt] Is their sampling frame the same as their population of interest?

⃝ Yes

⃝ No

(c) [1 Pt] Assuming we want to learn more about users’ boba preferences, which one of the
following is a valid way of handling the missing data?

⃝ Fill all missing comments with the empty string ""
⃝ Delete all rows with a None value

(d) [2 Pts] First, they want to extract the comments (without the usernames or votes) and store
them in a new column called Text. Write a Regex pattern to extract only the comments,
enclosed in, but not including, the single quotes.

text_pattern = r"_____________________________________"

responses["Text"] = responses["Comment"].str.extract(text_pattern)

Solution:
text_pattern = r"'([ˆ']+)'"

or

text_pattern = r"'(.*)'"

(e) [2 Pts] To assess each comment’s popularity, they want to extract the net vote from the
Comment column. They write a Regex pattern to create a new column called Vote with the
net vote that each comment got. There is a space between vote: and the number. Which of
the following options will correctly extract the number of votes? Select all that apply.

vote_pattern = r"_________________________________"

responses["Vote"] = responses["Comment"].str.extract(vote_pattern)
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□ vote pattern = r"\s([-\d]+)"
□ vote pattern = r"vote:\s([-0-9]+)"
□ vote pattern = r"([-\d]+)$"
□ vote pattern = r"vote:\s([\d]+)"

Solution: The first option is wrong because it will capture digits/numbers in usernames
or the comment texts: the 4th row will give 7 not 9.

The second and third options work.

The fourth option does not work because it does not match negative numbers—the 2nd
row will have no match.

(f) [4 Pts] After creating the Text column in part e), Casper and Winnie decide to drop the
Comment column. Additionally, they decide to limit their dataset to only rows with valid text
strings. In other words, you may assume there are no None values in the Text column.

The first few rows of responses now look like the following:

responses after processing

Casper and Winnie realize that not all comments answer the original question they posed.
Naturally, they wants to filter out the rows that do not have a relevant comment. Here, a
“relevant comment” is one that contains the word “tea”, but not as a substring of another word
(“tears” and “teapot” do not count). It should match regardless of cases (e.g. “Tea”, “tEa”,
“TEA”, and “teA” all count as the word “tea”).

Complete the following lines of code so that responses now contains only the rows
with relevant comments (i.e. rows 2 and 3 should be filtered out).

Hint: valid rows should be a boolean series indicating if each row contains a relevant
comment.

valid_rows = responses["Text"]______________A_________________
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responses = _______________________B__________________________

i. [3 Pts] What goes in the blank indicated by the letter A?

ii. [1 Pt] What goes in the blank indicated by the letter B?

Solution:
valid_rows = responses["Text"].str.lower()

.str.contains(r"[ˆ\w]tea[ˆ\w]")
responses = responses[valid_rows]
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5 A lucky strike [11 Pts]

We have discovered rich stores of the valuable and rare mineral unobtanium. There are two dif-
ferent types of unobtanium: unobtanium-A, which is stable, and unobtanium-B, which is highly
unstable. We carry out an experiment by starting a reaction that has no effect on unobtanium-A,
but causes unobtanium-B to rapidly degrade with a “half-life” of γ milliseconds (ms) as soon as
the reaction starts. That is, only half of the initial amount of unobtanium-B remains after γ ms,
only one quarter remains after 2γ ms, and so on. If β0 is the initial amount of unobtanium-A, and
β1 is the initial amount of unobtanium-B, then the total amount of unobtanium remaining after x
milliseconds is given by fθ(x) the formula:

fθ(x) = β0 + β12
−x/γ

Here θ = (β0, β1, γ), encoding all three model parameters.

We start the reaction, and at ten-millisecond intervals we take a noisy measurement of the total
amount of unobtanium remaining. This gives us a data set with five data points, shown in the table
below. x is the time since the reaction began, measured in milliseconds (ms), and y is the measured
amount of unobtanium remaining x ms after the reaction begins, measured in milligrams (mg).

x y
0 19

10 13
20 10
30 5
40 5

Unobtanium reaction data

For easy reference, the first four negative powers of 2 are given below:

2−1 =
1

2
= 0.5

2−2 =
1

4
= 0.25

2−3 =
1

8
= 0.125

2−4 =
1

16
= 0.0625
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(a) [3 Pts] From briefly inspecting the data, we come up with a rough guess that the parameters
are close to β0 = 4, β1 = 16, and γ = 10. What is the MSE for these parameters, in units of
mg2? Remember that the mean squared error is defined as

MSE(θ) =
1

n

n∑
i=1

(yi − ŷi)
2,

where n is the number of observations, and ŷi = fθ(xi) is the prediction we would have made
for yi if we used the parameters θ = (β0, β1, γ).

⃝ 0.2

⃝ 0.6

⃝ 1

⃝ 1.4
⃝ 2

You will get full credit for choosing the right answer, but you can show your work in the box
below if you want to get partial credit in case your answer is wrong:
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Solution: The predictions would be ŷ = (20, 12, 8, 6, 5), so the residuals are
e = (−1, 1, 2,−1, 0). The mean squared error is (1 + 1+ 4+ 1+ 0)/5 = 7/5 = 1.4mg2.
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(b) [3 Pts] Because our formula is not a linear model, we cannot use our closed-form expression
for the MSE-minimizing model parameters. Instead, we could use gradient descent to search
for the optimal model parameters, starting at our guess β

(0)
0 = 4, β

(0)
1 = 16, and γ(0) = 10.

What will be the value of β(1)
0 , the intercept parameter after one step of gradient descent?

Assume we use learning rate α = 0.5.

Hint: You will save some time if you don’t calculate more derivatives than you need to.
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Solution: Again, the residuals are e = (−1, 1, 2,−1, 0), and we can calculate the gradient
by taking partial derivatives:

∂

∂β0

1

n

n∑
i=1

(yi − β0 − β12
−xi/γ)2 =

−2

n

n∑
i=1

(yi − β0 − β12
−xi/γ)

=
−2

n

n∑
i=1

ei

=
−2

5

If we use the learning rate 0.5, then β
(1)
0 = β

(0)
0 − 0.5(−2

5
) = 4.2.
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(c) [2 Pts] Now suppose that, before we fit our model, we learn that another research group has
discovered that the half-life of unstable unobtanium is exactly ten milliseconds (γ = 10).
Now, instead of estimating γ, we can just plug in γ = 10. Better still, we don’t have to do
gradient descent anymore; we can estimate β = (β0, β1) using linear regression.

If we construct the right matrix X, we will get a closed form for our estimate:

β̂ = (XTX)−1XTY,

where Y is the column vector (or n × 1 matrix) representing the response. Which of the
following choices is the correct matrix X?

⃝

0
10
20
30
40

⃝

1 0 0
1 10 100
1 20 400
1 30 900
1 40 1600

⃝

0 1
10 0.5
20 0.25
30 0.125
40 0.0625

⃝

1 0
1 10
1 20
1 30
1 40

⃝

1 1
1 0.5
1 0.25
1 0.125
1 0.0625

⃝

1 0 1
1 10 0.5
1 20 0.25
1 30 0.125
1 40 0.0625

Solution: With γ = 10, our model is fθ(x) = β0 + β12
−x/10. Our design matrix would

therefore have two columns: one bias/intercept column of all ones, one column with our
feature 2−x/10 : {20, 2−1, . . . , 2−4}.

(d) [3 Pts] Continue to assume that we know γ = 10 so we are only estimating β0 and β1. Even
before we estimate the model, what can we be sure will be true about the fitted values ŷ and
the residuals e = y − ŷ for the estimated model? Select all that apply.
Note: In the following options, x represents time in milliseconds.

□ If we plot the residuals e against the time variable x, we will not see any clear
pattern in the plot.

□ The residuals will add up to zero.
□ The residuals will be uncorrelated with x.

□ The residuals will be highly correlated with the fitted values ŷ.
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□ The residuals in the left half of the plot will not be as spread out as the ones in the
right half of the plot.

□ The fitted values ŷ will have smaller variance than the original y values.

Solution: Again, our model is fθ(x) = β0 + β12
−x/10. Note the only feature is 2−x/10

and the time x itself is not a feature.

Option A is wrong because x is not a feature; we can’t be sure if there will be a pattern
in the residual plot. Even if x is a feature, there will still be patterns in the residual plot if
the relationship between the response and the predictor is not linear.

Option B is a fact from OLS.

Option C is wrong. It is a fact that in OLS the residuals are uncorrelated with the predictor
variables (proved in HW6), but here the predictor variable is not x (it’s 2−x/10) so we can’t
be sure about the correlation between the residuals and x.

Option D is wrong. Since the fitted values ŷ are in the column space of the design matrix,
the residuals will be orthogonal to the fitted values and therefore uncorrelated.

Option E is wrong. We can’t be sure of the shape and spread of the residual plot before
fitting the model.

Option F is correct. We showed that the variance of the original y values are the sum of the
variance of the fitted values ŷ and the variance of the residuals (σ2

y = σ2
ŷ +σ2

e ). Therefore,
σ2
y > σ2

ŷ .
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You are done with the Midterm! Congratulations!

Use this page to draw your Halloween costume!
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Pandas
Suppose df is a DataFrame; s is a Series. pd is the Pandas package.

Function Description

df[col] Returns the column labeled col from df as a Series.

df[[col1, col2]] Returns a DataFrame containing the columns labeled col1 and col2.

s.loc[rows] / df.loc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their index values.

s.iloc[rows] / df.iloc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their positions.

s.isnull() / df.isnull() Returns boolean Series/DataFrame identifying missing values

s.fillna(value) / df.fillna(value) Returns a Series/DataFrame where missing values are replaced by value

df.drop(labels, axis) Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)

df.rename(index=None, columns=None) Returns a DataFrame with renamed columns from a dictionary index and/or columns

df.sort_values(by, ascending=True) Returns a DataFrame where rows are sorted by the values in columns by

s.sort_values(ascending=True) Returns a sorted Series.

s.unique() Returns a NumPy array of the unique values

s.value_counts() Returns the number of times each unique value appears in a Series

pd.merge(left, right, how='inner',

on='a')

Returns a DataFrame joining DataFrames left and right on the column labeled a; the join is of type

inner

left.merge(right, left_on=col1,

right_on=col2)

Returns a DataFrame joining DataFrames left and right on columns labeled col1 and col2.

df.pivot_table(index, columns,

values=None, aggfunc='mean')

Returns a DataFrame pivot table where columns are unique values from columns (column name or

list), and rows are unique values from index (column name or list); cells are collected values using

aggfunc. If values is not provided, cells are collected for each remaining column with multi-level

column indexing.

df.set_index(col) Returns a DataFrame that uses the values in the column labeled col as the row index.

df.reset_index() Returns a DataFrame that has row index 0, 1, etc., and adds the current index as a column.

s.astype(dtype) Converts the Series s to of data type dtype in place.

Let grouped = df.groupby(by) where by can be a column label or a list of labels.

Function Description

grouped.count() Return a Series/DataFrame containing the size of each group, excluding missing values

grouped.size() Return a Series containing size of each group, including missing values

grouped.mean()/grouped.min()/grouped.max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding

missing values

grouped.filter(f)
grouped.agg(f)

Filters or aggregates using the given function f

Function Description

s.str.len() Returns a Series containing length of each string

s.str.lower()/s.str.upper() Returns a Series containing lowercase/uppercase version of each string

s.str.replace(pat, repl) Returns a Series after replacing occurences of substrings matching regular expression pat with string repl

s.str.contains(pat) Returns a boolean Series indicating whether a substring matching the regular expression pat is contained

in each string

s.str.extract(pat) Returns a Series of the first subsequence of each string that matches the regular expression pat. If pat
contains one group, then only the substring matching the group is extracted

Visualization Tukey-Mosteller Bulge Diagram.

Matplotlib: x and y are sequences of values.

Function Description

plt.plot(x, y) Creates a line plot of x against y

plt.scatter(x, y) Creates a scatter plot of x against y

plt.hist(x, bins=None) Creates a histogram of x; bins can be an integer or a sequence

plt.bar(x, height) Creates a bar plot of categories x and corresponding heights height



Seaborn: x and y are column names in a DataFrame data.

Function Description

sns.countplot(data, x) Create a barplot of value counts of variable x from data

sns.histplot(data, x, kde=False)
sns.displot(x, data, rug = True, kde = True)

Creates a histogram of x from data; optionally overlay a kernel density estimator.
displot is similar but can optionally overlay a rug plot.

sns.boxplot(data, x=None, y)
sns.violinplot(data, x=None, y)

Create a boxplot of y, optionally factoring by categorical x, from data. violinplot is

similar but also draws a kernel density estimator of y.

sns.scatterplot(data, x, y) Create a scatterplot of x versus y from data

sns.lmplot(x, y, data, fit_reg=True) Create a scatterplot of x versus y from data, and by default overlay a least-squares

regression line

sns.jointplot(x, y, data, kind) Combine a bivariate scatterplot of x versus y from data, with univariate density plots
of each variable overlaid on the axes; kind determines the visualization type for the

distribution plot, can be scatter, kde or hist

Regular Expressions
List of all metacharacters: . ^ $ * + ? ] [ \ | ( ) { }

Operator Description Operator Description

. Matches any character except \n * Matches preceding character/group zero or more times

\\ Escapes metacharacters ? Matches preceding character/group zero or one times

| Matches expression on either side of

expression; has lowest priority of any operator

+ Matches preceding character/group one or more times

\d, \w, \s Predefined character group of digits (0-9),

alphanumerics (a-z, A-Z, 0-9, and underscore),

or whitespace, respectively

^, $ Matches the beginning and end of the line, respectively

\D, \W, \S Inverse sets of \d, \w, \s, respectively ( ) Capturing group used to create a sub-expression

{m} Matches preceding character/group exactly m

times

[ ] Character class used to match any of the specified characters or

range (e.g. [abcde] is equivalent to [a-e])

{m, n} Matches preceding character/group at least m

times and at most n times if either m or n are

omitted, set lower/upper bounds to 0 and ∞,

respectively

[^ ] Invert character class; e.g. [^a-c] matches all characters except a,

b, c

Function Description

re.match(pattern, string) Returns a match if zero or more characters at beginning of string matches pattern, else None

re.search(pattern, string) Returns a match if zero or more characters anywhere in string matches pattern, else None

re.findall(pattern, string) Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)

re.sub(pattern, repl, string) Returns string after replacing all occurrences of pattern with repl

Modified lecture example for a single capturing group:

lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"' 
re.findall(r'\[\d+\/(\w+)\/\d+:\d+:\d+:\d+ .+\]', line) # returns ['Jan']

Modeling
Concept Formula Concept Formula

Variance σ2
x 1

n

n

∑
i

(xi − x̄)2
Correlation r

r =
1

n

n

∑
i=1

xi − x̄

σx

yi − ȳ

σy

L1  loss L1(y, ŷ) =∣ y − ŷ  ∣ Linear regression prediction of y ŷ = a + bx

L2  loss L2(y, ŷ) = (y − ŷ)2
Least squares linear regression, slope b̂ b̂ = r

σy

σx

 Empirical risk with loss L
R(θ) =

1

n

n

∑
i=1

L(yi, ŷi)
Least squares linear regression, intercept â â = ȳ − b̂x̄



Ordinary Least Squares
Multiple Linear Regression Model:  with design matrix , response vector , and predicted vector . If there are  features plus a

bias/intercept, then the vector of parameters . The vector of estimates  is obtained from fitting the model to

the sample .

Concept Formula Concept Formula

Mean squared error Normal equation

Least squares estimate,

if  is full rank

Residual vector, 

Multiple 

(coefficient of determination)

Ridge Regression

L2 Regularization

Ridge Regression 

(constrained form)

Ridge regression estimate

(closed form)

LASSO Regression

L1 Regularization

LASSO Regression

(constrained form)

Scikit-Learn
Suppose sklearn.model_selection and sklearn.linear_model are both imported packages.

Package Function(s) Description

sklearn.linear_model LinearRegression(fit_intercept=True) Returns an ordinary least squares Linear Regression model.

LassoCV(fit_intercept=True),

RidgeCV(fit_intercept=True)

Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model,

respectively, and picks the best model by cross validation.

model.fit(X, y) Fits the scikit-learn model to the provided X and y.

model.predict(X) Returns predictions for the X passed in according to the fitted model.

model.coef_ Estimated coefficients for the linear model, not including the intercept term.

model.intercept_ Bias/intercept term of the linear model. Set to 0.0 if fit_intercept=False.

sklearn.model_selection train_test_split(*arrays,

test_size=0.2)

Returns two random subsets of each array passed in, with 0.8 of the array in

the first subset and 0.2 in the second subset.

Ŷ = Xθ X Y Ŷ d

θ = [θ0, θ1, … , θd]T ∈ R
d+1 θ̂

(X,Y)

R(θ) = 1
n ||Y − Xθ||2

2
X

T
Xθ̂ = X

T
Y

X θ̂ = (XT
X)−1

X
T
Y

e e = Y − Ŷ

R2

R2 =
variance of fitted values

variance of y

1
n ||Y − Xθ||2

2 + α∑d
i=1 θ

2
i

1
n ||Y − Xθ||2

2 such that ∑d
i=1 θ

2
i ≤ Q

θ̂ridge = (XT
X + nαI)−1

X
T
Y

1
n ||Y − Xθ||2

2 + α∑d
i=1 |θi|

1
n ||Y − Xθ||2

2 such that ∑d
i=1 |θi| ≤ Q
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