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The Big Data Problem
Data is growing faster than processor speeds

Growing data sources
»Mostly machine generated

Cheap storage

Stalling CPU speeds



Examples
Facebook’s daily event data: 4 PB

Google’s web index: 100 PB

1000 genomes project: 200 TB

Cost of 1 TB of disk: $16

Time to read 1 TB from disk: 6 hours (50 MB/s)



The Big Data Problem
Single machine can no longer process or even 
store all the data!

Only solution is to distribute over large clusters



Google Datacenter

How do we program these?



Traditional Network Programming

Message-passing between nodes

Really hard to do at scale:
»How to split problem across nodes?
»How to deal with failures?
»Even worse: stragglers (node is not failed, but slow)



Data-Parallel Models
Restrict the programming interface so that the 
system can do more automatically

“Here’s an operation, run it on all of the data”
» I don’t care where it runs (you schedule that)
» In fact, feel free to run it twice on different nodes

Early example: MapReduce



MapReduce
First widely popular programming model for 
data-intensive apps on clusters

Published by Google in 2004

Popularized by open-source Hadoop project



MapReduce Programming Model

Data type: key-value records

Map function:

(Kin, Vin) → list(Kinter, Vinter)

Reduce function:

(Kinter, list(Vinter)) → list(Kout, Vout)



Example: Word Count
def map(line):

foreach word in line.split():
output(word, 1)

def reduce(key, values):
output(key, sum(values))



Word Count Execution
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Other MapReduce Apps
How would you write these with map & reduce?

Search: find all the records in a file that contain 
the word “Berkeley”

Top words: Find the top 10 most common words



MapReduce Execution
Mappers are scheduled on same node as their 
input block if possible
»Minimize network use to improve performance

Mappers save outputs to local disk before serving 
to reducers
»Allows recovery if a reducer crashes
»Allows running more reducers than # of nodes



Fault Tolerance in MapReduce
1. If a task crashes:
»Retry on another node
• OK for a map because it had no dependencies
• OK for reduce because map outputs are on disk

» If the same task repeatedly fails, fail the job or 
ignore that input block

ØNote: For fault tolerance to work, user tasks 
must be deterministic and side-effect-free



Fault Tolerance in MapReduce
2. If a node crashes:
»Relaunch its current tasks on other nodes
»Relaunch any maps the node previously ran
• Necessary because their output files were lost along 

with the crashed node



Fault Tolerance in MapReduce
3. If a task is going slowly (straggler):
–Launch second copy of task on another node
–Take the output of whichever copy finishes first, 

and kill the other one

Critical for performance in large clusters (many 
possible causes of stragglers)



Summary
Data-parallel programming models let systems 
automatically manage much of execution:
»Assigning work, load balancing, fault recovery

But... the story doesn’t end here!
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Limitations of MapReduce
Programmability: most applications require 
higher level functions than map / reduce
»E.g. statistics, matrix multiply, graph search
»Google ads pipeline had 20 MR steps

Performance: inefficient to combine multiple 
MapReduce steps into complex programs



Apache Spark
Programming model that generalizes MapReduce 
to support more applications
»Adds efficient, in-memory data sharing

Large library of built-in functions

APIs in Python, Java, Scala, R

Spark Core
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Spark Programmability

#include "mapreduce/mapreduce.h"

// User’s map function

class SplitWords: public Mapper {
public:
virtual void Map(const MapInput& input)

{
const string& text = input.value();
const int n = text.size();
for (int i = 0; i < n; ) {

// Skip past leading whitespace
while (i < n && isspace(text[i]))

i++;

// Find word end
int start = i;
while (i < n && !isspace(text[i]))

i++;

if (start < i)
Emit(text.substr(

start,i-start),"1");

}
}

};

REGISTER_MAPPER(SplitWords);

// User’s reduce function
class Sum: public Reducer {

public:
virtual void Reduce(ReduceInput* input)
{

// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {

value += StringToInt(
input->value());

input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}

};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {

ParseCommandLineFlags(argc, argv);
MapReduceSpecification spec;
for (int i = 1; i < argc; i++) {

MapReduceInput* in= spec.add_input();
in->set_format("text");
in->set_filepattern(argv[i]);
in->set_mapper_class("SplitWords");

}

// Specify the output files     

MapReduceOutput* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");

out->set_reducer_class("Sum");

// Do partial sums within map

out->set_combiner_class("Sum");

// Tuning parameters 
spec.set_machines(2000);

spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it

MapReduceResult result;
if (!MapReduce(spec, &result)) abort();
return 0;

}

WordCount in MapReduce:



Spark Programmability

file = spark.textFile(“hdfs://...”)

counts = file.flatMap(lambda line: line.split(“ ”))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

counts.save(“out.txt”)

WordCount in Spark:



Spark Performance
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Programming Model
Write programs in terms of transformations on 
distributed datasets

Low-level API: Resilient Distributed Dataset (RDD)
»Collection of objects that can be stored in memory 

or disk across a cluster
»Built via parallel transformations (map, filter, …)
»Automatically rebuilt on failure



Example: Text Search
Load a large log file into memory, then 
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(‘\t’)[2])

messages.cache()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “Berkeley” in s).count()

messages.filter(lambda s: “MIT” in s).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Example: full-text search of Wikipedia 
in 0.5 sec (vs 20 s for on-disk data)



Fault Tolerance

file.map(lambda record: (record.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda type, count: count > 10)

filterreducemap
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RDDs track lineage info to rebuild lost data
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file.map(lambda record: (record.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda type, count: count > 10)

RDDs track lineage info to rebuild lost data



Example: Logistic Regression
Goal: find line separating two sets of points
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Logistic Regression Performance
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Built-in Libraries

DataFrames
and SQL

Structured
Streaming MLlib

Spark Core (RDDs)

GraphX

Largest integrated standard library for big data



Built-in Libraries

DataFrames
and SQL

Structured 
Streaming MLlib

Spark Core (RDDs)

GraphX

Largest integrated standard library for big data

Now the most common way to use Spark



Challenges with RDD API
Looks high-level, but hides many semantics of 
computation from engine
»Functions passed in are arbitrary blocks of code
»Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways



Example Problem
pairs = data.map(lambda word: (word, 1))

groups = pairs.groupByKey()

groups.map(lambda k, vs: (k, vs.sum))

Writes all groups as lists
of integers in memory

Then promptly
aggregates them



Challenge: Data Representation
Java & Python objects often have high overhead

class User(name: String, friends: Array<Int>)
User(“Bobby”, Array(1, 2))

User 0x… 0x…

String

3

0

1 2

Bobby

5 0x…

int[]

char[] 5



Spark SQL & DataFrames
Efficient library for working with structured data
»Two interfaces: SQL for data analysts and external 

apps, DataFrames for complex programs
»Automatically optimizes computation and storage 

underneath, as in a relational database



Spark SQL Architecture
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DataFrame API
DataFrames hold rows with a known schema 
and offer relational operations through a DSL
users = spark.sql(“select * from users”)

ma_users = users[users.state == “MA”]

ma_users.count()

ma_users.groupBy(“name”).avg(“age”)

ma_users.map(lambda row: row.user.to_upper())

Expression tree (AST)



What DataFrames Enable
1. Compact binary representation

• Columnar, compressed cache; rows for 
processing

2. Optimization across operators (join reordering, 
predicate pushdown, etc)

3. Runtime code generation



Performance
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Data Sources
Uniform way to access structured data
»Apps can migrate across Hive, Cassandra, JSON, …
»Rich semantics allows query pushdown into sources

Spark
SQL

users[users.age > 20]

select * from users



Examples
JSON:

JDBC:

Together:

select user.id, text from tweets

{
“text”: “hi”,
“user”: {
“name”: “bob”,
“id”: 15 }

}

tweets.json
select age from users where lang = “en”

select t.text, u.age
from tweets t, users u
where t.user.id = u.id
and u.lang = “en” Spark

SQL
{JSON}

select id, age from
users where lang=“en”



Built-in Libraries

DataFrames
and SQL

Structured 
Streaming MLlib

Spark Core (RDDs)

GraphX

Largest integrated standard library for big data



Spark MLlib
Machine learning library with 50+ algorithms:
» Classification/regression: linear models, decision trees, 

random forests, isotonic regression, …
» Clustering: k-means, Gaussian mixture, LDA, ...
» Collaborative filtering: ALS, NMF
» Dimensionality reduction: SVD, PCA

“Pipeline” API inspired by scikit-learn



MLlib Pipeline Example
# Configure an ML pipeline with three stages
tokenizer = Tokenizer(inputCol="text", outputCol="words") 
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),

outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.001)

pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

# Fit the pipeline to training data
model = pipeline.fit(train_data)

# Make predictions on DataFrame of test data
prediction = model.transform(test_data)



Combining Libraries
# Prepare a dataset using SQL
ctx.jsonFile(“tweets.json”).registerTempTable(“tweets”)
points = ctx.sql(“select latitude, longitude from tweets”)

# Train a machine learning model
model = KMeans.train(points, 10)

# Apply it to a stream
sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a+b)



Performance of Composition
Separate computing frameworks:
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Summary
Libraries + function-based interface let users 
write parallel programs similar to sequential code

Can use Spark interactively in Python, R, etc
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20M downloads/month, clusters up to 8000 nodes
1800 contributors to open source project

Spark Community



Example Use Cases
Correlate 500,000 patient records with DNA to design therapies

Optimize production using ML and SQL on petabyte-scale data

Identify securities fraud via ML on 30 PB of data

5000+ customers running 10 million VMs/day on Databricks alone

Query 170 PB of data that used to be in 14 databases



Early Use Case: Neuroscience

HHMI Janelia Farm analyzes data from full-brain 
imaging of neural activity

Images from Jeremy Freeman

Larval zebrafish
+

Light-sheet imaging 
=

2 TB / hour of data



Images from Jeremy Freeman



Data Analysis
Streaming code 
does clustering,
dimens. reduction 
on 80-node cluster

Images from Jeremy Freeman



Early Use Case: Genomics
Berkeley ADAM stores 
and processes reads 
with standard big data 
tools & formats

bdgenomics.org

http://bdgenomics.org/


ADAM Results
25% reduction in file size over BAM, by using 
standard Apache Parquet format

Sorting, filtering, and base
quality score recalibration
(BQSR) scale up linearly

Interactive use in shell



Conclusion
Apache Spark offers a high-level interface to 
work with big data based on data-parallel model

Large set of existing libraries

Easy to try on just your laptop!
spark.apache.org

http://spark.apache.org/

