
Matei Zaharia

Big Data Analytics
with Apache

Outline
The big data problem

MapReduce

Apache Spark

How people are using Spark

The Big Data Problem
Data is growing faster than processor speeds

Growing data sources
»Mostly machine generated

Cheap storage

Stalling CPU speeds

Examples
Facebook’s daily event data: 4 PB

Google’s web index: 100 PB

1000 genomes project: 200 TB

Cost of 1 TB of disk: $16

Time to read 1 TB from disk: 6 hours (50 MB/s)

The Big Data Problem
Single machine can no longer process or even
store all the data!

Only solution is to distribute over large clusters

Google Datacenter

How do we program these?

Traditional Network Programming

Message-passing between nodes

Really hard to do at scale:
»How to split problem across nodes?
»How to deal with failures?
»Even worse: stragglers (node is not failed, but slow)

Data-Parallel Models
Restrict the programming interface so that the
system can do more automatically

“Here’s an operation, run it on all of the data”
» I don’t care where it runs (you schedule that)
» In fact, feel free to run it twice on different nodes

Early example: MapReduce

MapReduce
First widely popular programming model for
data-intensive apps on clusters

Published by Google in 2004

Popularized by open-source Hadoop project

MapReduce Programming Model

Data type: key-value records

Map function:

(Kin, Vin) → list(Kinter, Vinter)

Reduce function:

(Kinter, list(Vinter)) → list(Kout, Vout)

Example: Word Count
def map(line):

foreach word in line.split():
output(word, 1)

def reduce(key, values):
output(key, sum(values))

Word Count Execution

the quick
brown

fox

the fox
ate the
mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Other MapReduce Apps
How would you write these with map & reduce?

Search: find all the records in a file that contain
the word “Berkeley”

Top words: Find the top 10 most common words

MapReduce Execution
Mappers are scheduled on same node as their
input block if possible
»Minimize network use to improve performance

Mappers save outputs to local disk before serving
to reducers
»Allows recovery if a reducer crashes
»Allows running more reducers than # of nodes

Fault Tolerance in MapReduce
1. If a task crashes:
»Retry on another node
• OK for a map because it had no dependencies
• OK for reduce because map outputs are on disk

» If the same task repeatedly fails, fail the job or
ignore that input block

ØNote: For fault tolerance to work, user tasks
must be deterministic and side-effect-free

Fault Tolerance in MapReduce
2. If a node crashes:
»Relaunch its current tasks on other nodes
»Relaunch any maps the node previously ran
• Necessary because their output files were lost along

with the crashed node

Fault Tolerance in MapReduce
3. If a task is going slowly (straggler):
–Launch second copy of task on another node
–Take the output of whichever copy finishes first,

and kill the other one

Critical for performance in large clusters (many
possible causes of stragglers)

Summary
Data-parallel programming models let systems
automatically manage much of execution:
»Assigning work, load balancing, fault recovery

But... the story doesn’t end here!

Outline
The big data problem

MapReduce

Apache Spark

How people are using Spark

Limitations of MapReduce
Programmability: most applications require
higher level functions than map / reduce
»E.g. statistics, matrix multiply, graph search
»Google ads pipeline had 20 MR steps

Performance: inefficient to combine multiple
MapReduce steps into complex programs

Apache Spark
Programming model that generalizes MapReduce
to support more applications
»Adds efficient, in-memory data sharing

Large library of built-in functions

APIs in Python, Java, Scala, R

Spark Core

St
re

am
in

g

SQ
L

M
Ll

ib

G
ra

ph
X

Spark Programmability

#include "mapreduce/mapreduce.h"

// User’s map function

class SplitWords: public Mapper {
public:
virtual void Map(const MapInput& input)

{
const string& text = input.value();
const int n = text.size();
for (int i = 0; i < n;) {

// Skip past leading whitespace
while (i < n && isspace(text[i]))

i++;

// Find word end
int start = i;
while (i < n && !isspace(text[i]))

i++;

if (start < i)
Emit(text.substr(

start,i-start),"1");

}
}

};

REGISTER_MAPPER(SplitWords);

// User’s reduce function
class Sum: public Reducer {

public:
virtual void Reduce(ReduceInput* input)
{

// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {

value += StringToInt(
input->value());

input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}

};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {

ParseCommandLineFlags(argc, argv);
MapReduceSpecification spec;
for (int i = 1; i < argc; i++) {

MapReduceInput* in= spec.add_input();
in->set_format("text");
in->set_filepattern(argv[i]);
in->set_mapper_class("SplitWords");

}

// Specify the output files

MapReduceOutput* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");

out->set_reducer_class("Sum");

// Do partial sums within map

out->set_combiner_class("Sum");

// Tuning parameters
spec.set_machines(2000);

spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it

MapReduceResult result;
if (!MapReduce(spec, &result)) abort();
return 0;

}

WordCount in MapReduce:

Spark Programmability

file = spark.textFile(“hdfs://...”)

counts = file.flatMap(lambda line: line.split(“ ”))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

counts.save(“out.txt”)

WordCount in Spark:

Spark Performance

4.1
121

0 50 100 150

K-means Clustering
Hadoop M/R
Spark

sec

0.96
80

0 50 100

Logistic Regression
Hadoop M/R
Spark

sec

Programming Model
Write programs in terms of transformations on
distributed datasets

Low-level API: Resilient Distributed Dataset (RDD)
»Collection of objects that can be stored in memory

or disk across a cluster
»Built via parallel transformations (map, filter, …)
»Automatically rebuilt on failure

Example: Text Search
Load a large log file into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(‘\t’)[2])

messages.cache()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “Berkeley” in s).count()

messages.filter(lambda s: “MIT” in s).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Example: full-text search of Wikipedia
in 0.5 sec (vs 20 s for on-disk data)

Fault Tolerance

file.map(lambda record: (record.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda type, count: count > 10)

filterreducemap

In
pu

t f
ile

RDDs track lineage info to rebuild lost data

filterreducemap

In
pu

t f
ile

Fault Tolerance

file.map(lambda record: (record.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda type, count: count > 10)

RDDs track lineage info to rebuild lost data

Example: Logistic Regression
Goal: find line separating two sets of points

+

–

+ ++

+

+

+
+ +

– –
–

–

–

–
– –

+

target

–

random initial line

Logistic Regression Performance

110 s / iteration

first iteration 80 s
further iterations 5 s

0
500

1000
1500
2000
2500
3000
3500
4000

1 5 10 20 30

Ru
nn

in
g

Ti
m

e
(s

)

Number of Iterations

Hadoop
Spark

Built-in Libraries

DataFrames
and SQL

Structured
Streaming MLlib

Spark Core (RDDs)

GraphX

Largest integrated standard library for big data

Built-in Libraries

DataFrames
and SQL

Structured
Streaming MLlib

Spark Core (RDDs)

GraphX

Largest integrated standard library for big data

Now the most common way to use Spark

Challenges with RDD API
Looks high-level, but hides many semantics of
computation from engine
»Functions passed in are arbitrary blocks of code
»Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways

Example Problem
pairs = data.map(lambda word: (word, 1))

groups = pairs.groupByKey()

groups.map(lambda k, vs: (k, vs.sum))

Writes all groups as lists
of integers in memory

Then promptly
aggregates them

Challenge: Data Representation
Java & Python objects often have high overhead

class User(name: String, friends: Array<Int>)
User(“Bobby”, Array(1, 2))

User 0x… 0x…

String

3

0

1 2

Bobby

5 0x…

int[]

char[] 5

Spark SQL & DataFrames
Efficient library for working with structured data
»Two interfaces: SQL for data analysts and external

apps, DataFrames for complex programs
»Automatically optimizes computation and storage

underneath, as in a relational database

Spark SQL Architecture

Logical
Plan

Physical
Plan

Catalog

Optimizer
RDDs

…

Data
Source

API

SQL Data
Frames

Code
Generator

DataFrame API
DataFrames hold rows with a known schema
and offer relational operations through a DSL
users = spark.sql(“select * from users”)

ma_users = users[users.state == “MA”]

ma_users.count()

ma_users.groupBy(“name”).avg(“age”)

ma_users.map(lambda row: row.user.to_upper())

Expression tree (AST)

What DataFrames Enable
1. Compact binary representation

• Columnar, compressed cache; rows for
processing

2. Optimization across operators (join reordering,
predicate pushdown, etc)

3. Runtime code generation

Performance

0 2 4 6 8 10

RDD Scala

RDD Python

DataFrame Scala

DataFrame Python

DataFrame R

DataFrame SQL

Time for aggregation benchmark (s)

Data Sources
Uniform way to access structured data
»Apps can migrate across Hive, Cassandra, JSON, …
»Rich semantics allows query pushdown into sources

Spark
SQL

users[users.age > 20]

select * from users

Examples
JSON:

JDBC:

Together:

select user.id, text from tweets

{
“text”: “hi”,
“user”: {
“name”: “bob”,
“id”: 15 }

}

tweets.json
select age from users where lang = “en”

select t.text, u.age
from tweets t, users u
where t.user.id = u.id
and u.lang = “en” Spark

SQL
{JSON}

select id, age from
users where lang=“en”

Built-in Libraries

DataFrames
and SQL

Structured
Streaming MLlib

Spark Core (RDDs)

GraphX

Largest integrated standard library for big data

Spark MLlib
Machine learning library with 50+ algorithms:
» Classification/regression: linear models, decision trees,

random forests, isotonic regression, …
» Clustering: k-means, Gaussian mixture, LDA, ...
» Collaborative filtering: ALS, NMF
» Dimensionality reduction: SVD, PCA

“Pipeline” API inspired by scikit-learn

MLlib Pipeline Example
Configure an ML pipeline with three stages
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),

outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.001)

pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

Fit the pipeline to training data
model = pipeline.fit(train_data)

Make predictions on DataFrame of test data
prediction = model.transform(test_data)

Combining Libraries
Prepare a dataset using SQL
ctx.jsonFile(“tweets.json”).registerTempTable(“tweets”)
points = ctx.sql(“select latitude, longitude from tweets”)

Train a machine learning model
model = KMeans.train(points, 10)

Apply it to a stream
sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a+b)

Performance of Composition
Separate computing frameworks:

…
FS

read
FS

writeET
L FS

read
FS

writetra
in FS

read
FS

writequ
er

y

FS
write

FS
read ET

L
tra

in
qu

er
y

Spark:

Summary
Libraries + function-based interface let users
write parallel programs similar to sequential code

Can use Spark interactively in Python, R, etc

Outline
The big data problem

MapReduce

Apache Spark

How people are using Spark

20M downloads/month, clusters up to 8000 nodes
1800 contributors to open source project

Spark Community

Example Use Cases
Correlate 500,000 patient records with DNA to design therapies

Optimize production using ML and SQL on petabyte-scale data

Identify securities fraud via ML on 30 PB of data

5000+ customers running 10 million VMs/day on Databricks alone

Query 170 PB of data that used to be in 14 databases

Early Use Case: Neuroscience

HHMI Janelia Farm analyzes data from full-brain
imaging of neural activity

Images from Jeremy Freeman

Larval zebrafish
+

Light-sheet imaging
=

2 TB / hour of data

Images from Jeremy Freeman

Data Analysis
Streaming code
does clustering,
dimens. reduction
on 80-node cluster

Images from Jeremy Freeman

Early Use Case: Genomics
Berkeley ADAM stores
and processes reads
with standard big data
tools & formats

bdgenomics.org

http://bdgenomics.org/

ADAM Results
25% reduction in file size over BAM, by using
standard Apache Parquet format

Sorting, filtering, and base
quality score recalibration
(BQSR) scale up linearly

Interactive use in shell

Conclusion
Apache Spark offers a high-level interface to
work with big data based on data-parallel model

Large set of existing libraries

Easy to try on just your laptop!
spark.apache.org

http://spark.apache.org/

