import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import zipfile
%matplotlib inline
with open('data/county_and_state.csv') as f:
county_and_state = pd.read_csv(f)
with open('data/county_and_population.csv') as f:
county_and_pop = pd.read_csv(f)
Suppose we'd like to join these two tables. Unfortunately, we can't, because the strings representing the county names don't match, as seen below.
county_and_state
County | State | |
---|---|---|
0 | De Witt County | IL |
1 | Lac qui Parle County | MN |
2 | Lewis and Clark County | MT |
3 | St John the Baptist Parish | LS |
county_and_pop
County | Population | |
---|---|---|
0 | DeWitt | 16798 |
1 | Lac Qui Parle | 8067 |
2 | Lewis & Clark | 55716 |
3 | St. John the Baptist | 43044 |
Before we can join them, we'll do what I call canonicalization.
Canonicalization: A process for converting data that has more than one possible representation into a "standard", "normal", or canonical form (definition via Wikipedia).
def canonicalize_county(county_name):
return (
county_name
.lower() # lower case
.replace(' ', '') # remove spaces
.replace('&', 'and') # replace &
.replace('.', '') # remove dot
.replace('county', '') # remove county
.replace('parish', '') # remove parish
)
county_and_pop['clean_county'] = county_and_pop['County'].map(canonicalize_county)
county_and_state['clean_county'] = county_and_state['County'].map(canonicalize_county)
display(county_and_pop) # display outputs even if not last line in cell
county_and_state
County | Population | clean_county | |
---|---|---|---|
0 | DeWitt | 16798 | dewitt |
1 | Lac Qui Parle | 8067 | lacquiparle |
2 | Lewis & Clark | 55716 | lewisandclark |
3 | St. John the Baptist | 43044 | stjohnthebaptist |
County | State | clean_county | |
---|---|---|---|
0 | De Witt County | IL | dewitt |
1 | Lac qui Parle County | MN | lacquiparle |
2 | Lewis and Clark County | MT | lewisandclark |
3 | St John the Baptist Parish | LS | stjohnthebaptist |
county_and_pop.merge(county_and_state, on='clean_county')
County_x | Population | clean_county | County_y | State | |
---|---|---|---|---|---|
0 | DeWitt | 16798 | dewitt | De Witt County | IL |
1 | Lac Qui Parle | 8067 | lacquiparle | Lac qui Parle County | MN |
2 | Lewis & Clark | 55716 | lewisandclark | Lewis and Clark County | MT |
3 | St. John the Baptist | 43044 | stjohnthebaptist | St John the Baptist Parish | LS |
with open('data/log.txt', 'r') as f:
log_lines = f.readlines()
log_lines
['169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04/ HTTP/1.1" 200 2585 "http://anson.ucdavis.edu/courses/"\n', '193.205.203.3 - - [2/Feb/2005:17:23:6 -0800] "GET /stat141/Notes/dim.html HTTP/1.0" 404 302 "http://eeyore.ucdavis.edu/stat141/Notes/session.html"\n', '169.237.46.240 - "" [3/Feb/2006:10:18:37 -0800] "GET /stat141/homework/Solutions/hw1Sol.pdf HTTP/1.1"\n']
Suppose we want to extract the day, month, year, hour, minutes, seconds, and timezone. Looking at the data, we see that these items are not in a fixed position relative to the beginning of the string. That is, slicing by some fixed offset isn't going to work.
log_lines[0][20:31]
'26/Jan/2014'
log_lines[1][20:31]
'/Feb/2005:1'
Instead, we'll need to use some more sophisticated thinking. Let's focus on only the first line of the file.
first = log_lines[0]
first
'169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04/ HTTP/1.1" 200 2585 "http://anson.ucdavis.edu/courses/"\n'
pertinent = first.split("[")[1].split(']')[0]
day, month, rest = pertinent.split('/')
year, hour, minute, rest = rest.split(':')
seconds, time_zone = rest.split(' ')
day, month, year, hour, minute, seconds, time_zone
('26', 'Jan', '2014', '10', '47', '58', '-0800')
A much more sophisticated but common approach is to extract the information we need using a regular expression. See today's lecture slides (Spring 2022) for more on regular expressions.
import re
Python re.sub
text = '<div><td valign="top">Moo</td></div>'
pattern = r"<[^>]+>"
re.sub(pattern, '', text)
'Moo'
pandas
: Series.str.replace
df_html = pd.DataFrame(['<div><td valign="top">Moo</td></div>',
'<a href="http://ds100.org">Link</a>',
'<b>Bold text</b>'], columns=['Html'])
df_html
Html | |
---|---|
0 | <div><td valign="top">Moo</td></div> |
1 | <a href="http://ds100.org">Link</a> |
2 | <b>Bold text</b> |
# Series -> Series
df_html["Html"].str.replace(pattern, '', regex=True)
0 Moo 1 Link 2 Bold text Name: Html, dtype: object
text = "My social security number is 123-45-6789 bro, or actually maybe it’s 321-45-6789.";
pattern = r"[0-9]{3}-[0-9]{2}-[0-9]{4}"
re.findall(pattern, text) # ['123-45-6789', '321-45-6789']
['123-45-6789', '321-45-6789']
Regex Groups
text = """Observations: 03:04:53 - Horse awakens.
03:05:14 - Horse goes back to sleep."""
pattern = r"(\d\d):(\d\d):(\d\d) - (.*)"
re.findall(pattern, text)
[('03', '04', '53', 'Horse awakens.'), ('03', '05', '14', 'Horse goes back to sleep.')]
pandas
df_ssn = pd.DataFrame(
['987-65-4321',
'forty',
'123-45-6789 bro or 321-45-6789',
'999-99-9999'],
columns=['SSN'])
df_ssn
SSN | |
---|---|
0 | 987-65-4321 |
1 | forty |
2 | 123-45-6789 bro or 321-45-6789 |
3 | 999-99-9999 |
Series.str.findall
# -> Series of lists
pattern = r"[0-9]{3}-[0-9]{2}-[0-9]{4}"
df_ssn['SSN'].str.findall(pattern)
0 [987-65-4321] 1 [] 2 [123-45-6789, 321-45-6789] 3 [999-99-9999] Name: SSN, dtype: object
Series.str.extract
# -> DataFrame of first match group
pattern_group = r"([0-9]{3}-[0-9]{2}-[0-9]{4})" # 1 group
df_ssn['SSN'].str.extract(pattern_group)
0 | |
---|---|
0 | 987-65-4321 |
1 | NaN |
2 | 123-45-6789 |
3 | 999-99-9999 |
# Will extract first match of all groups
pattern_group_mult = r"([0-9]{3})-([0-9]{2})-([0-9]{4})" # 3 groups
df_ssn['SSN'].str.extract(pattern_group_mult)
0 | 1 | 2 | |
---|---|---|---|
0 | 987 | 65 | 4321 |
1 | NaN | NaN | NaN |
2 | 123 | 45 | 6789 |
3 | 999 | 99 | 9999 |
Series.str.extractall
# -> DataFrame, one row per match
df_ssn['SSN'].str.extractall(pattern_group_mult)
0 | 1 | 2 | ||
---|---|---|---|---|
match | ||||
0 | 0 | 987 | 65 | 4321 |
2 | 0 | 123 | 45 | 6789 |
1 | 321 | 45 | 6789 | |
3 | 0 | 999 | 99 | 9999 |
# original dataframe
df_ssn
SSN | |
---|---|
0 | 987-65-4321 |
1 | forty |
2 | 123-45-6789 bro or 321-45-6789 |
3 | 999-99-9999 |
Python version:
line = log_lines[0]
display(line)
pattern = r'\[(\d+)\/(\w+)\/(\d+):(\d+):(\d+):(\d+) (.+)\]'
day, month, year, hour, minute, second, time_zone = re.findall(pattern, line)[0] # get first match
day, month, year, hour, minute, second, time_zone
'169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04/ HTTP/1.1" 200 2585 "http://anson.ucdavis.edu/courses/"\n'
('26', 'Jan', '2014', '10', '47', '58', '-0800')
# beyond the scope of lecture, but left here for your interest
day, month, year, hour, minute, second, time_zone = re.search(pattern, line).groups()
day, month, year, hour, minute, second, time_zone
('26', 'Jan', '2014', '10', '47', '58', '-0800')
Pandas version:
df = pd.DataFrame(log_lines, columns=['Log'])
df
Log | |
---|---|
0 | 169.237.46.168 - - [26/Jan/2014:10:47:58 -0800... |
1 | 193.205.203.3 - - [2/Feb/2005:17:23:6 -0800] "... |
2 | 169.237.46.240 - "" [3/Feb/2006:10:18:37 -0800... |
Option 1: Series.str.findall
pattern = r'\[(\d+)\/(\w+)\/(\d+):(\d+):(\d+):(\d+) (.+)\]'
df['Log'].str.findall(pattern)
0 [(26, Jan, 2014, 10, 47, 58, -0800)] 1 [(2, Feb, 2005, 17, 23, 6, -0800)] 2 [(3, Feb, 2006, 10, 18, 37, -0800)] Name: Log, dtype: object
Option 2: Series.str.extractall
df['Log'].str.extractall(pattern)
0 | 1 | 2 | 3 | 4 | 5 | 6 | ||
---|---|---|---|---|---|---|---|---|
match | ||||||||
0 | 0 | 26 | Jan | 2014 | 10 | 47 | 58 | -0800 |
1 | 0 | 2 | Feb | 2005 | 17 | 23 | 6 | -0800 |
2 | 0 | 3 | Feb | 2006 | 10 | 18 | 37 | -0800 |
Wrangling either of these two DataFrames into a nice format (like below) is left as an exercise for you! You will do a related problem on the homework.
Day | Month | Year | Hour | Minute | Second | Time Zone | |
---|---|---|---|---|---|---|---|
0 | 26 | Jan | 2014 | 10 | 47 | 58 | -0800 |
1 | 2 | Feb | 2005 | 17 | 23 | 6 | -0800 |
2 | 3 | Feb | 2006 | 10 | 18 | 37 | -0800 |
# your code here
...
In this example, we will show how regexes can allow us to track quantitative data across categories defined by the appearance of various text fields.
In this example we'll see how the presence of certain keywords can affect quantitative data:
How do restaurant health scores vary as a function of the number of violations that mention a particular keyword?
(e.g., unclean surfaces, vermin, permits, etc.)
vio = pd.read_csv('data/violations.csv', header=0, names=['bid', 'date', 'desc'])
desc = vio['desc']
vio.head()
bid | date | desc | |
---|---|---|---|
0 | 19 | 20171211 | Inadequate food safety knowledge or lack of ce... |
1 | 19 | 20171211 | Unapproved or unmaintained equipment or utensils |
2 | 19 | 20160513 | Unapproved or unmaintained equipment or utensi... |
3 | 19 | 20160513 | Unclean or degraded floors walls or ceilings ... |
4 | 19 | 20160513 | Food safety certificate or food handler card n... |
counts = desc.value_counts()
counts.shape
(14253,)
That's a lot of different descriptions!! Can we canonicalize at all? Let's explore two sets of 10 rows.
counts[:10]
Unclean or degraded floors walls or ceilings 999 Unapproved or unmaintained equipment or utensils 659 Inadequately cleaned or sanitized food contact surfaces 493 Improper food storage 476 Inadequate and inaccessible handwashing facilities 467 Moderate risk food holding temperature 452 Wiping cloths not clean or properly stored or inadequate sanitizer 418 Moderate risk vermin infestation 374 Unclean nonfood contact surfaces 369 Food safety certificate or food handler card not available 353 Name: desc, dtype: int64
# Hmmm...
counts[50:60]
Unclean or degraded floors walls or ceilings [ date violation corrected: 11/29/2017 ] 16 Unclean or degraded floors walls or ceilings [ date violation corrected: 9/19/2017 ] 16 Inadequate HACCP plan record keeping 16 Unclean or degraded floors walls or ceilings [ date violation corrected: 11/27/2017 ] 15 Unclean or degraded floors walls or ceilings [ date violation corrected: 12/7/2017 ] 15 Inadequately cleaned or sanitized food contact surfaces [ date violation corrected: 9/26/2017 ] 14 Unclean or degraded floors walls or ceilings [ date violation corrected: 11/28/2017 ] 14 Unclean or degraded floors walls or ceilings [ date violation corrected: 9/6/2017 ] 14 Unapproved or unmaintained equipment or utensils [ date violation corrected: 9/19/2017 ] 14 Unapproved living quarters in food facility 13 Name: desc, dtype: int64
# Use regular expressions to cut out the extra info in square braces.
vio['clean_desc'] = (vio['desc']
.str.replace('\s*\[.*\]$', '', regex=True)
.str.strip() # removes leading/trailing whitespace
.str.lower())
vio.head()
bid | date | desc | clean_desc | |
---|---|---|---|---|
0 | 19 | 20171211 | Inadequate food safety knowledge or lack of ce... | inadequate food safety knowledge or lack of ce... |
1 | 19 | 20171211 | Unapproved or unmaintained equipment or utensils | unapproved or unmaintained equipment or utensils |
2 | 19 | 20160513 | Unapproved or unmaintained equipment or utensi... | unapproved or unmaintained equipment or utensils |
3 | 19 | 20160513 | Unclean or degraded floors walls or ceilings ... | unclean or degraded floors walls or ceilings |
4 | 19 | 20160513 | Food safety certificate or food handler card n... | food safety certificate or food handler card n... |
# canonicalizing definitely helped
vio['clean_desc'].value_counts().shape
(68,)
vio['clean_desc'].value_counts().head()
unclean or degraded floors walls or ceilings 3507 moderate risk food holding temperature 2542 inadequate and inaccessible handwashing facilities 2529 unapproved or unmaintained equipment or utensils 2382 inadequately cleaned or sanitized food contact surfaces 2301 Name: clean_desc, dtype: int64
Remember our research question:
How do restaurant health scores vary as a function of the number of violations that mention a particular keyword?
(e.g., unclean surfaces, vermin, permits, etc.)
Below, we use regular expressions and df.assign()
(documentation) to method chain our creation of new boolean features, one per keyword.
# use regular expressions to assign new features for the presence of various keywords
# regex metacharacter |
with_features = (vio
.assign(is_unclean = vio['clean_desc'].str.contains('clean|sanit'))
.assign(is_high_risk = vio['clean_desc'].str.contains('high risk'))
.assign(is_vermin = vio['clean_desc'].str.contains('vermin'))
.assign(is_surface = vio['clean_desc'].str.contains('wall|ceiling|floor|surface'))
.assign(is_human = vio['clean_desc'].str.contains('hand|glove|hair|nail'))
.assign(is_permit = vio['clean_desc'].str.contains('permit|certif'))
)
with_features.head()
bid | date | desc | clean_desc | is_unclean | is_high_risk | is_vermin | is_surface | is_human | is_permit | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 19 | 20171211 | Inadequate food safety knowledge or lack of ce... | inadequate food safety knowledge or lack of ce... | False | False | False | False | False | True |
1 | 19 | 20171211 | Unapproved or unmaintained equipment or utensils | unapproved or unmaintained equipment or utensils | False | False | False | False | False | False |
2 | 19 | 20160513 | Unapproved or unmaintained equipment or utensi... | unapproved or unmaintained equipment or utensils | False | False | False | False | False | False |
3 | 19 | 20160513 | Unclean or degraded floors walls or ceilings ... | unclean or degraded floors walls or ceilings | True | False | False | True | False | False |
4 | 19 | 20160513 | Food safety certificate or food handler card n... | food safety certificate or food handler card n... | False | False | False | False | True | True |
That's the end of our text wrangling. Now let's do some more analysis to analyze restaurant health as a function of the number of violation keywords.
To do so we'll first group so that our granularity is one inspection for a business on particular date. This effectively counts the number of violations by keyword for a given inspection.
count_features = (with_features
.groupby(['bid', 'date'])
.sum()
.reset_index()
)
count_features.iloc[255:260, :]
bid | date | is_unclean | is_high_risk | is_vermin | is_surface | is_human | is_permit | |
---|---|---|---|---|---|---|---|---|
255 | 489 | 20150728 | 5 | 0 | 2 | 3 | 0 | 0 |
256 | 489 | 20150807 | 1 | 0 | 0 | 1 | 0 | 0 |
257 | 489 | 20160308 | 2 | 2 | 1 | 0 | 1 | 0 |
258 | 489 | 20160721 | 2 | 1 | 1 | 1 | 0 | 1 |
259 | 489 | 20161220 | 3 | 0 | 1 | 2 | 0 | 0 |
Check out our new dataframe in action:
count_features.query('is_vermin > 1').head(5)
bid | date | is_unclean | is_high_risk | is_vermin | is_surface | is_human | is_permit | |
---|---|---|---|---|---|---|---|---|
255 | 489 | 20150728 | 5 | 0 | 2 | 3 | 0 | 0 |
291 | 527 | 20170821 | 1 | 1 | 2 | 1 | 1 | 1 |
1508 | 2622 | 20160526 | 4 | 2 | 2 | 3 | 0 | 0 |
1573 | 2721 | 20150422 | 2 | 1 | 2 | 1 | 0 | 0 |
1746 | 2945 | 20150921 | 2 | 1 | 2 | 2 | 2 | 1 |
Now we'll reshape this "wide" table into a "tidy" table using a pandas feature called pd.melt
(documentation) which we won't describe in any detail, other than that it's effectively the inverse of pd.pivot_table
.
Our granularity is now a violation type for a given inspection (for a business on a particular date).
broken_down_by_violation_type = pd.melt(count_features, id_vars=['bid', 'date'],
var_name='feature', value_name='num_vios')
# show a particular inspection's results
broken_down_by_violation_type.query('bid == 489 & date == 20150728')
bid | date | feature | num_vios | |
---|---|---|---|---|
255 | 489 | 20150728 | is_unclean | 5 |
12517 | 489 | 20150728 | is_high_risk | 0 |
24779 | 489 | 20150728 | is_vermin | 2 |
37041 | 489 | 20150728 | is_surface | 3 |
49303 | 489 | 20150728 | is_human | 0 |
61565 | 489 | 20150728 | is_permit | 0 |
Remember our research question:
How do restaurant health scores vary as a function of the number of violations that mention a particular keyword?
(e.g., unclean surfaces, vermin, permits, etc.)
We have the second half of this question! Now let's join our table with the inspection scores, located in inspections.csv
.
# read in the scores
ins = pd.read_csv('data/inspections.csv',
header=0,
usecols=[0, 1, 2],
names=['bid', 'score', 'date'])
ins.head()
bid | score | date | |
---|---|---|---|
0 | 19 | 94 | 20160513 |
1 | 19 | 94 | 20171211 |
2 | 24 | 98 | 20171101 |
3 | 24 | 98 | 20161005 |
4 | 24 | 96 | 20160311 |
While the inspection scores were stored in a separate file from the violation descriptions, we notice that the primary key in inspections is (bid
, date
)! So we can reference this key in our join.
# join scores with the table broken down by violation type
violation_type_and_scores = (
broken_down_by_violation_type
.merge(ins, on=['bid', 'date'])
)
violation_type_and_scores.head(12)
bid | date | feature | num_vios | score | |
---|---|---|---|---|---|
0 | 19 | 20160513 | is_unclean | 1 | 94 |
1 | 19 | 20160513 | is_high_risk | 0 | 94 |
2 | 19 | 20160513 | is_vermin | 0 | 94 |
3 | 19 | 20160513 | is_surface | 1 | 94 |
4 | 19 | 20160513 | is_human | 1 | 94 |
5 | 19 | 20160513 | is_permit | 1 | 94 |
6 | 19 | 20171211 | is_unclean | 0 | 94 |
7 | 19 | 20171211 | is_high_risk | 0 | 94 |
8 | 19 | 20171211 | is_vermin | 0 | 94 |
9 | 19 | 20171211 | is_surface | 0 | 94 |
10 | 19 | 20171211 | is_human | 0 | 94 |
11 | 19 | 20171211 | is_permit | 1 | 94 |
Let's plot the distribution of scores, broken down by violation counts, for each inspection feature (is_clean
, is_high_risk
, is_vermin
, is_surface
).
# you will learn this syntax next week. Focus on interpreting for now.
sns.catplot(x='num_vios', y='score',
col='feature', col_wrap=2,
kind='box',
data=violation_type_and_scores)
<seaborn.axisgrid.FacetGrid at 0x7f50ec7cfd90>
Above we can observe:
Date parsing using pd.to_datetime
.
pd.Series(log_lines).str.extract(r'\[(.*) -0800\]').apply(
lambda s: pd.to_datetime(s, format='%d/%b/%Y:%H:%M:%S'))
0 | |
---|---|
0 | 2014-01-26 10:47:58 |
1 | 2005-02-02 17:23:06 |
2 | 2006-02-03 10:18:37 |