
Spring 2022 Data C100/C200 Final Reference Sheet

Principal Component Analysis (PCA)
The -th Principal Component of the matrix is defined as the -th column of defined by Singular Value Decomposition (SVD).

 is the SVD of if and are orthonormal matrices and is a diagonal matrix. The diagonal entries of ,

, are known as singular values of , where for and .

Define the design matrix . Define the total variance of as the sum of individual variances of the features. The amount of

variance captured by the -th principal component is equivalent to , where is the number of datapoints.

Logistic Regression and Classification
Logistic Regression Model: For input feature vector , . The estimate is the parameter that minimizes the

average cross-entropy loss on training data. For a single datapoint, define cross-entropy loss as ,

where is the probability that the response is 1.

Logistic Regression Classifier: For a given input and trained logistic regression model with parameter , compute

. predict response with classification threshold as follows:

Scikit-Learn
Suppose linear_model is an imported sklearn package.

Class/Attribute Description Function Description

linear_model.LogisticRegression(

fit_intercept=True, penalty='l2',
C=1.0)

Returns an ordinary least squares

Linear Regression model.

Hyperparameter C is inverse of

regularization parameter, C = 1/λ.

model.fit(X, y) Fits the scikit-learn model to the

provided X and y.

model.coef_ Estimated coefficients for the

model, not including the

intercept term.

model.predict_proba(X) Returns predicted probabilities

for the X passed in according to

the fitted model. If binary classes,
will return probabilities for both

class 0 and 1.

model.intercept_ Bias/intercept term of the model.

Set to 0.0 if

fit_intercept=False.

model.predict(X) Returns predictions for the X

passed in according to the fitted

model.

model.score(X, y) Returns the average model

accuracy on the given test data X
and labels y.

i X i UΣ

X = UΣV T X U V T Σ Σ

[s1, … , sr, 0, … , 0] X si > sj i < j r = rank(X)

X ∈ R
n×p X p

i s2
i /n n

x P̂θ(Y = 1|x) = σ(xTθ) θ̂ θ

− [y log(p) + (1 − y) log(1 − p)]

p

x θ

p = P̂(Y = 1|x) = σ(xTθ) ŷ T

ŷ = classify(x) = {1 p ≥ T
0 otherwise

Confusion Matrix

Columns are the predicted values and

rows are the actual classes .

0 1

0 True negative (TN) False Positive (FP)

1 False negative (FN) True Positive (TP)

ŷ

y

Classification Performance

Suppose you predict datapoints.

Metric Formula Other Names Visualization Plot

Accuracy Precision-Recall

Curve

Precision vs. Recall for

different thresholds

Precision ROC Curve TPR vs. FPR for different

thresholds

Recall/TPR True Positive

Rate, Sensitivity

FPR False Positive

Rate, Specificity

n

TP+TN
n

T

TP
TP+FP

T

TP
TP+FN

FP
FP+TN

Suppose tree and ensemble are imported sklearn packages.

Class/Function Description

tree.DecisionTreeClassifier(criterion='entropy',
max_depth=None)

Returns a decision tree model which uses criterion to measure the quality of a split.

max_depth is the maximum depth of the tree; if None, then nodes are expanded until all

leaves are pure.

ensemble.RandomForestClassifier(n_estimators=100,
criterion='entropy', max_depth=None)

Fit n_estimators decision tree classifiers on sub-samples of the dataset.

model.fit(X, y) Decision tree: Fit a decision tree model to the provided X and y.
Random forest classifier: Build a forest model of decision trees fit to the provided X and y.

model.predict(X) Decision tree: Returns predicted response for the X passed in according to the fitted

model.

Random forest classifier: Returns the predicted class by highest mean probability estimate

according to the trees in the forest model.

Clustering
K-Means Clustering: Pick an arbitrary k, and randomly place k “centers”, each a different color. Then repeat until convergence:

�. Color points according to the closest center (defined as squared distance).

�. Move center for each color to center of points with that color.

K-Means minimizes inertia, defined as the sum of squared distances from each datapoint to its center.

Agglomerative Clustering: Assign each datapoint to its own cluster. Then, recursively merge pairs of clusters together until there are

clusters remaining.

A datapoint's silhouette score is defined as , where is the mean distance to other points in its cluster,

and is the mean distance to points in its closest cluster.

Decision Trees and Random Forests
Suppose you have a decision tree classifier for classes. For each node, define the probability for class as

, where is the number of datapoints in class (of the total in the node). Then the entropy of the node (in bits) is defined

as , and the weighted entropy of the node is its entropy scaled by the fraction of datapoints in that node.

Decision tree generation algorithm: All of the data starts in the root node. Repeat until every node is either pure or unsplittable:

Pick the best feature x and best split value , where is picked to maximize the change in weighted entropy between the parent

node and the child nodes.

Split data into two nodes, one where x < , and one where x ≥ .

A node that has only one samples from one class is called a “pure” node. A node that has overlapping data points from different classes

and thus that cannot be split is called “unsplittable”.

A random forest is a collection of many decision trees fit to variations of the same training data (e.g., bootstrapped samples, also called

bagging; or random subsets of features). It is an ensemble method.

k

S S = (B − A)/ max(A,B) A

B

k C ∈ {1, … , k}

pC = dC/d dC C d

S = −∑C pC log2 pC

β β

β β

