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Principal Component Analysis (PCA)
The -th Principal Component of the matrix  is defined as the -th column of  defined by Singular Value Decomposition (SVD).

 is the SVD of  if  and  are orthonormal matrices and  is a diagonal matrix. The diagonal entries of , 

, are known as singular values of , where  for  and .

Define the design matrix . Define the total variance of  as the sum of individual variances of the  features. The amount of

variance captured by the -th principal component is equivalent to , where  is the number of datapoints.

Logistic Regression and Classification
Logistic Regression Model: For input feature vector , . The estimate  is the parameter  that minimizes the

average cross-entropy loss on training data. For a single datapoint, define cross-entropy loss as ,

where  is the probability that the response is 1.

Logistic Regression Classifier: For a given input  and trained logistic regression model with parameter , compute 

. predict response  with classification threshold  as follows:

Scikit-Learn
Suppose linear_model is an imported sklearn package.

Class/Attribute Description Function Description

linear_model.LogisticRegression(

fit_intercept=True, penalty='l2',
C=1.0)

Returns an ordinary least squares

Linear Regression model.

Hyperparameter C is inverse of

regularization parameter, C = 1/λ.

model.fit(X, y) Fits the scikit-learn model to the

provided X and y.

model.coef_ Estimated coefficients for the

model, not including the

intercept term.

model.predict_proba(X) Returns predicted probabilities

for the X passed in according to

the fitted model. If binary classes,
will return probabilities for both

class 0 and 1.

model.intercept_ Bias/intercept term of the model.

Set to 0.0 if

fit_intercept=False.

model.predict(X) Returns predictions for the X

passed in according to the fitted

model.

model.score(X, y) Returns the average model

accuracy on the given test data X
and labels y.
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Confusion Matrix

Columns are the predicted values  and

rows are the actual classes .
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ŷ

y

Classification Performance

Suppose you predict  datapoints.

Metric Formula Other Names Visualization Plot

Accuracy Precision-Recall

Curve

Precision vs. Recall for

different thresholds 

Precision ROC Curve TPR vs. FPR for different

thresholds 
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Suppose tree and ensemble are imported sklearn packages.

Class/Function Description

tree.DecisionTreeClassifier(criterion='entropy',
max_depth=None)

Returns a decision tree model which uses criterion to measure the quality of a split.

max_depth is the maximum depth of the tree; if None, then nodes are expanded until all

leaves are pure.

ensemble.RandomForestClassifier(n_estimators=100,
criterion='entropy', max_depth=None)

Fit n_estimators decision tree classifiers on sub-samples of the dataset.

model.fit(X, y) Decision tree: Fit a decision tree model to the provided X and y.
Random forest classifier: Build a forest model of decision trees fit to the provided X and y.

model.predict(X) Decision tree: Returns predicted response for the X passed in according to the fitted

model. 

Random forest classifier: Returns the predicted class by highest mean probability estimate

according to the trees in the forest model.

Clustering
K-Means Clustering: Pick an arbitrary k, and randomly place k “centers”, each a different color. Then repeat until convergence:

�. Color points according to the closest center (defined as squared distance).

�. Move center for each color to center of points with that color.

K-Means minimizes inertia, defined as the sum of squared distances from each datapoint to its center.

Agglomerative Clustering: Assign each datapoint to its own cluster. Then, recursively merge pairs of clusters together until there are 

clusters remaining.

A datapoint's silhouette score  is defined as , where  is the mean distance to other points in its cluster,

and  is the mean distance to points in its closest cluster.

Decision Trees and Random Forests
Suppose you have a decision tree classifier for  classes. For each node, define the probability for class  as 

, where  is the number of datapoints in class  (of the  total in the node). Then the entropy of the node (in bits) is defined

as , and the weighted entropy of the node is its entropy scaled by the fraction of datapoints in that node.

Decision tree generation algorithm: All of the data starts in the root node. Repeat until every node is either pure or unsplittable:

Pick the best feature x and best split value , where  is picked to maximize the change in weighted entropy between the parent

node and the child nodes.

Split data into two nodes, one where x < , and one where x ≥ .

A node that has only one samples from one class is called a “pure” node. A node that has overlapping data points from different classes

and thus that cannot be split is called “unsplittable”.

A random forest is a collection of many decision trees fit to variations of the same training data (e.g., bootstrapped samples, also called

bagging; or random subsets of features). It is an ensemble method.
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