Instructions:

- This midterm exam must be completed in the 80 minute time period ending at 12:30PM, unless you have accommodations supported by a DSP letter.

- Note that some questions have bubbles to select a choice. This means that you should only select one choice. Other questions have boxes. This means you should select all that apply.

- When selecting your choices, you must fully shade in the box/circle. Check marks will likely be mis-graded.

- You may use a one-sheet (two-sided) study guide.

- Work quickly through each question. There are a total of 168 points on this exam.

Honor Code:

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I am the person whose name is on the exam and I completed this exam in accordance with the honor code.

Signature: __
Syntax Reference

Regular Expressions

"^" matches the position at the beginning of string (unless used for negation "[^]")

"$" matches the position at the end of string character.

"?" match preceding literal or sub-expression 0 or 1 times. When following "+" or "*" results in non-greedy matching.

"+" match preceding literal or sub-expression one or more times.

"*" match preceding literal or sub-expression zero or more times.

"." match any character except new line.

"[]" match any one of the characters inside, accepts a range, e.g., "[a-c]".

"()" used to create a sub-expression

"\d" match any digit character. "\D" is the complement.

"\w" match any word character (letters, digits, underscore). "\W" is the complement.

"\s" match any whitespace character including tabs and newlines. \S is the complement.

"\b" match boundary between words

Some useful re and requests package functions.

`re.findall(pattern, st)` return the list of all sub-strings in st that match pattern.

`requests.post(url, auth, params, data)` makes a POST requests with params in the header and data in the body.

`requests.get(url, auth, params, data)` makes a GET requests with params in the header and data in the body.

Useful Pandas Syntax

`df.loc[row_selection, col_list]` # row selection can be boolean

`df.iloc[row_selection, col_list]` # row selection can be boolean

`df.groupby(group_columns)[['colA', 'colB']].sum()`

`pd.merge(df1, df2, on='hi')` # Merge df1 and df2 on the ‘hi’ column

`pd.pivot_table(df, index=out_rows, columns=out_cols, values=out_values, aggfunc="mean", fill_value=0.0)` # The input dataframe values to use as rows values to use as cols values to use in table aggregation function value used for missing comb.
Data Design and Bias

1. [1 Pt] Your letter grade (e.g., A+, A, ...) in a class that grades on a curve is most accurately described as what kind of data?

 ○ Nominal ○ Ordinal ○ Quantitative ○ Numerical

2. [1 Pt] The number of gold medals won by each country in the 2018 Olympics is an example of what kind of data:

 ○ Nominal ○ Ordinal ○ Qualitative ○ Quantitative

3. A discussion leader with 32 students in her section would like to sample a single student that is representative of the total population of students in her section. She enumerates her students 0 to 31 and follows one of the following procedures:

 (a) [4 Pts] She flips a fair coin 31 times and records the number of heads. She then selects the student with the number that matches the number of heads. What type of sample has the discussion leader taken? Select all that apply.

 □ Simple random sample □ Probability sample □ Convenience sample
 □ None of the above

 (b) [4 Pts] She flips a fair coin 5 times and records the sequence of heads and tails as 1’s and 0’s, respectively. She then selects the student whose number corresponds to the binary sequence. For example, if she flipped [1, 1, 0, 0, 1] then she would select:

 \[1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 0 \times 2^3 + 1 \times 2^4 = 21 \]

 What type of sample has the discussion leader taken? Select all that apply.

 □ Simple random sample □ Probability sample □ Convenience sample
 □ None of the above

4. Sampling True/False For each of the following select true or false:

 (a) [1 Pt] If each element/member of the population has an equal chance of being chosen, then we have a simple random sample.

 ○ True ○ False
(b) [1 Pt] In cluster sampling, each cluster has an equal chance of being chosen.
 - True - False

(c) [1 Pt] In stratified sampling, each element of the population is assigned to exactly one stratum.
 - True - False

(d) [1 Pt] A small simple random sample can often be more representative of the population than a very large convenience sample.
 - True - False

5. We would like to understand the sleeping habits on university students living in campus dorms across the United States.

 (a) [2 Pts] To keep costs down we randomly sample a subset of dorms across the United States and then construct a simple random sample of students within each of the selected dorms. This is an example of which sampling procedure:
 - Simple random sample - Stratified sample - Cluster sample

 (b) [2 Pts] Which of the following sampling procedures would ensure that we have good coverage of both male and female students within each dorm.
 - Simple random sample - Stratified sample - Cluster sample

Pandas

6. **Pandas True/False**

 (a) [1 Pt] If the pandas DataFrame \(\text{df} \) has 10 columns, then \(\text{df}.iloc[:, 0:5] \) will return a DataFrame with 5 columns.
 - True - False

 (b) [1 Pt] Assuming that \(\text{len(df1)} == 100 \) and \(\text{len(df2)} == 100 \) are both true, then \(\text{df1.merge(df2, how='outer')} \) produces at most 200 rows.
 - True - False

 (c) [1 Pt] The return type of the \(\text{pandas.DataFrame.groupby} \) function can either be a DataFrame or a Series object.
 - True - False
7. The tables `food` and `store` contain information regarding different ingredients and where to buy them. You may assume all strings are strings and numbers are floats.

This is a preview of the first 5 rows of the DataFrames. You may assume it has many more rows than what is shown, with the same structure and no missing data.

<table>
<thead>
<tr>
<th>food</th>
<th>index</th>
<th>name</th>
<th>color</th>
<th>calories</th>
<th>food_group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>broccoli</td>
<td>green</td>
<td>25</td>
<td>vegetable</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>chicken</td>
<td>pink</td>
<td>200</td>
<td>meat</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>cheddar</td>
<td>yellow</td>
<td>350</td>
<td>dairy</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mango</td>
<td>yellow</td>
<td>40</td>
<td>fruit</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>carrot</td>
<td>orange</td>
<td>50</td>
<td>vegetable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>store</th>
<th>index</th>
<th>food_name</th>
<th>store_name</th>
<th>distance</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>broccoli</td>
<td>yasai</td>
<td>1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>broccoli</td>
<td>safeway</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>cheddar</td>
<td>trader_joes</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mango</td>
<td>berkeley_bowl</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>carrot</td>
<td>costco</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

(a) [5 Pts] Which of the following expressions returns a `Series` containing only the names of all the red vegetables in the `food` DataFrame? *Select all that apply.*

- □ `food[(food["color"] == "red") | (food["food_group"] == "vegetable")]["name"]`
- □ `food[(food["color"] == "red") & (food["food_group"] == "vegetable")]["name"]`
- □ `food[(food["color"] == "red") & (food["food_group"] == "vegetable")]`
- □ `food[(food["name"].isin(store["food_name"])) & (food["food_group"] == "vegetable")]`
- □ None of the above.

(b) [5 Pts] *Select all* of the following expressions that generate a DataFrame containing only rows of fruit.

- □ `food.set_index("food_group").loc["fruit", :]`
- □ `food.where(food["food_group"] == "fruit")`
- □ `food[food["food_group"] == "fruit"]`
- □ `food["food_group"] == "fruit"`
- □ None of the above.
(c) [5 Pts] Select all true statements about the following expression.

```python
cal100_foods = food[food['calories'] <= 100]
nearby_stores = store[store['distance'] <= 2]
output_df = cal100_foods.merge(nearby_stores,
   how = "left",
   left_on="name",
   right_on="food_name")
```

□ output_df[‘name’] and output_df[‘food_name’] are always the same.
□ output_df could contain NaN values.
□ nearby_stores always contains the same number of rows as the output_df.
□ output_df could contain more rows than the original food DataFrame.
□ None of the above.

(d) [4 Pts] Which of the following tables is represented by agg_df?

```python
safeway_food = store[store['store_name'] == "safeway"]
merged_df = pd.merge(food, safeway_food, left_on="name",
   right_on="food_name")
agg_df = (merged_df.groupby("food_group")
   .mean()   .drop(columns="distance")
)
```

![Table 1]

![Table 2]
(e) [4 Pts] Which of the following expressions would generate the following table?

<table>
<thead>
<tr>
<th>color</th>
<th>green</th>
<th>pink</th>
<th>yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>food_group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fruit</td>
<td>40.0</td>
<td>78.0</td>
<td>40.0</td>
</tr>
<tr>
<td>meat</td>
<td>100.0</td>
<td>200.0</td>
<td>6.0</td>
</tr>
<tr>
<td>vegetable</td>
<td>27.5</td>
<td>200.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

- (food.groupby(["food_group", "color"])[["calories"]) .median())
- pd.pivot_table(food, values="calories",
 index="food_group", columns="color",
 aggfunc=np.median)
- (food.set_index("food_group")
 .groupby("color")[["calories"]])
 .mean())
- pd.pivot_table(food, values="calories",
 index="color", columns="food_group",
 aggfunc=np.median)
EDA and Visualization

8. [5 Pts] Which of the following claims are true for the distribution shown below? Select all that apply.

- [] It is left skewed
- [] It is unimodal
- [] The right tail is longer than the left tail
- [] It is symmetric
- [] None of the above

![Distribution Diagram]

9. [5 Pts] We wish to compare the results of kernel density estimation using a gaussian kernel and a boxcar kernel. For $\alpha > 0$, which of the following statements are true? Choose all that apply.

Gaussian Kernel:

$$K_\alpha(x, z) = \frac{1}{\sqrt{2\pi\alpha^2}} \exp\left(-\frac{(x - z)^2}{2\alpha^2}\right)$$

Box Car Kernel:

$$B_\alpha(x, z) = \begin{cases} \frac{1}{\alpha} & \text{if } -\frac{\alpha}{2} \leq x - z \leq \frac{\alpha}{2} \\ 0 & \text{else} \end{cases}$$

- [] Decreasing α for a gaussian kernel decreases the smoothness of the KDE.
- [] The gaussian kernel is always better than the boxcar kernel for KDEs.
- [] Because the gaussian kernel is smooth, we can safely use large α values for kernel density estimation without worrying about the actual distribution of data.
- [] The area under the box car kernel is 1, regardless of the value of α
- [] None of the above
10. [5 Pts] Which of the following styles of plots are good for visualizing the distribution of a continuous variable? Choose all that apply.

- [] Pie Charts
- [] Box Plots
- [] Bar Plots
- [] Histogram
- [] None of the above

11. [2 Pts] Suppose you wish to compare the number of homes homeowners in the US own and their respective salaries. Which style of plot would be the best?

- [] Scatter Plot
- [] Overlaid Line Plots
- [] Side by Side Box Plots
- [] Stacked Bar Plot

12. [5 Pts] Consider the plot below. What are some ways to improve the plot? Choose all that apply. Assume each is done individually.

- [] Remove outliers and then plot on a different scale
- [] Plot as a line plot instead of a scatterplot.
- [] Jitter the data with noise sampled from a uniform distribution of (-1, 1)
- [] Utilize transparency
- [] None of the above

13. [5 Pts] Consider the plot below which visualizes day of the week versus the average tip given in dollars. What are serious visualization errors made with this plot? Choose all that apply.

- [] Area perception
- [] Jittering
- [] Overplotting
- [] Stacking
- [] None of the above
14. **True/False**

(a) [1 Pt] A data scientist must always consider potential sources of bias in a given dataset.

- [] True
- [] False

(b) [1 Pt] It is always reasonable to drop missing values.

- [] True
- [] False

15. Use the following dataset to answer the following questions:

<table>
<thead>
<tr>
<th>id</th>
<th>diet</th>
<th>pulse</th>
<th>time</th>
<th>kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>low fat</td>
<td>85</td>
<td>1 min</td>
<td>rest</td>
</tr>
<tr>
<td>1</td>
<td>low fat</td>
<td>85</td>
<td>15 min</td>
<td>rest</td>
</tr>
<tr>
<td>1</td>
<td>low fat</td>
<td>88</td>
<td>30 min</td>
<td>rest</td>
</tr>
<tr>
<td>2</td>
<td>low fat</td>
<td>90</td>
<td>1 min</td>
<td>rest</td>
</tr>
<tr>
<td>2</td>
<td>low fat</td>
<td>92</td>
<td>15 min</td>
<td>rest</td>
</tr>
<tr>
<td>2</td>
<td>low fat</td>
<td>93</td>
<td>30 min</td>
<td>rest</td>
</tr>
<tr>
<td>3</td>
<td>low fat</td>
<td>97</td>
<td>1 min</td>
<td>rest</td>
</tr>
<tr>
<td>3</td>
<td>low fat</td>
<td>97</td>
<td>15 min</td>
<td>rest</td>
</tr>
</tbody>
</table>

(a) [1 Pt] Which of the following **best** describes the format of this file?

- [] Raw text
- [] Tab Separated Values (TSV)
- [] Comma Separated Values (CSV)
- [] JSON

(b) [4 Pts] Select all the true statements.

- [] From the data available, the id seems to be a primary key.
- [] There appear to be no missing values.
- [] There are nested records.
- [] None of the above.

16. [5 Pts] Select all the true statements about the following **XML** file:

```xml
<email>
  <to>Mr. Garcia</to>
  <body>Hello there! How are we today?</body>
</email>
<email>
  <to>Mr. Garcia</to>
  <body>Hello there! How are we today?</body>
</email>
```
17. Use the following JSON file classes.json printed below:

```
[{
  "Prof": "Gonzalez",
  "Classes": [ "CS186",
                {
                  "Name": "Data100",
                  "Year": [2017, 2018]
                }
              ],
  "Tenured": false
},
{
  "Prof": "Nolan",
  "Classes": ["Stat133", "Stat153", "Stat198", "Data100"],
  "Tenured": true
}]
```

(a) [5 Pts] Select all the true statements.

□ This JSON file is correctly formatted.
□ The Classes list defined on line 3 contains strings and dictionaries which is not permitted.
□ The dates 2017 and 2018 on lines 6 should be quoted.
□ the dictionary keys (e.g., "Prof", "Classes") should not be quoted.
□ None of the above statements are true.

(b) [3 Pts] What would be the output of the following block of code:

```python
import json
with open("classes.json", "r") as f:
    x = json.load(f)
len(x[0]["Classes"][0])
```

○ 1 ○ 2 ○ 4 ○ 5 ○ None of the above.

18. [6 Pts] Which data formats would be well suited for nested data? Select all that apply.

□ *.csv □ *.xml □ *.py □ *.json □ *.tsv □ None of the above.
19. [6 Pts] Which of the following are reasonable motivations for applying a log transformation? Select all that apply:

- Perform dimensionality reduction on the data.
- To help straighten relationships between pairs of variables.
- Remove missing values.
- Bring data distribution closer to random sampling.
- To help visualize highly skewed distributions.
- None of the above.

20. [4 Pts] Which of the following record is the most coarse grained?

- {"Location": "Downtown Berkeley", "avg_income": 83000}
- {"Location": "Los Angeles, CA", "avg_income": 75042}
- {"Location": "Bay Area, CA", "avg_income": 73042}
- {"Location": "California", "avg_income": 50001}

21. [4 Pts] Which of the following transformations would be best suited to linearize the relationship shown in the plot below? Note that all \(y > 0 \):

- Plotting \(\log(y) \) vs \(\log(x) \).
- Plotting \(\log(y) \) vs \(x \).
- Plotting \(\exp(y) \) vs \(\exp(x) \).
- Plotting \(\exp(y) \) vs \(\log(x) \).
- Plotting \(y \) vs \(\log(x) \).
- Plotting \(\log(y) \) vs \(\log(\log(x)) \).
Regular Expressions and String Manipulation

22. What would the following lines of code return? There are no spaces in any of the strings.

(a) [3 Pts] re.findall(r"\..*", "VIXX-Error.mp3.bak")

 ○ [] ○ ['bak'] ○ ['.bak'] ○ ['mp3', '.bak']
 ○ ['mp3.bak'] ○ ['VIXX-Error.mp3.bak']

(b) [3 Pts] re.findall(r"[cat|dog]", "bobcat")

 ○ [] ○ ['cat'] ○ ['c', 'a', 't'] ○ ['o', 'cat']
 ○ ['o', 'c', 'a', 't'] ○ None of the above

(c) [3 Pts] re.findall(r"a?p*[le]"$, "apple")

 ○ [] ○ ['e'] ○ ['appl'] ○ ['appe']
 ○ ['a', 'pp', 'l', 'e'] ○ None of the above

(d) [3 Pts] re.findall(r"</[^>]*>|<[^/>]*>"
 "<body><h1>text</h1></body>")

 ○ [] ○ ['<body>', '<h1>'] ○ ['body', 'h1']
 ○ ['</h1>', '', '</body>'] ○ ['</h1>', '</body>']
 ○ ['<body>', '<h1>', '</h1>', '', '</body>'] ○ None of the above

23. [9 Pts] On which of the following words would the regular expression r"^w[^p]\.*r" return a match (on part or all of the word) instead of None? Choose all that apply.

 □ sporous □ sooloos □ murdrum □ repaper □ hydroaviation
 □ defendress □ gourmet □ level □ redder

24. [5 Pts] Which regular expression would match part or all of the words on the left but NONE the ones on the right? Choose all that apply.

 flossy | baronet
 beefin | oriole
 ghost | scupper
Modeling and Estimation

25. Let x_1, \ldots, x_n denote any collection of numbers with average $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
 (a) [3 Pts] $\sum_{i=1}^{n} (x_i - \bar{x})^2 \leq \sum_{i=1}^{n} (x_i - c)^2$ for all c.
 - True - False

 (b) [3 Pts] $\sum_{i=1}^{n} |x_i - \bar{x}| \leq \sum_{i=1}^{n} |x_i - c|$ for all c.
 - True - False

26. Consider the following loss function based on data x_1, \ldots, x_n:
\[
\ell(\mu, \sigma) = \log(\sigma^2) + \frac{1}{n\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.
\]
 (a) [5 Pts] Which estimator $\hat{\mu}$ is a minimizer for μ, i.e. satisfies $\ell(\hat{\mu}, \sigma^2) \leq \ell(\mu, \sigma^2)$ for any μ, σ?
 - $\hat{\mu} = 0$
 - $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i + \log \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2$
 - $\hat{\mu} = \frac{1}{n\sigma^2} \sum_{i=1}^{n} x_i + \log(\sigma^2)$
 - $\hat{\mu} = \text{median}(x_1, \ldots, x_n)$.

 (b) [10 Pts] Which of the following is the result of solving $\frac{\partial \ell}{\partial \sigma} = 0$ for σ (for fixed μ)? Show your work in the box below.
 - $\sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$.
 - $\sigma = \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \right)^{1/2}$.
 - $\sigma = \frac{2}{n} \sum_{i=1}^{n} (\mu - x_i)$.
 - $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_j)^2}$.
27. [10 Pts] Consider the following loss function based on data \(x_1, \ldots, x_n \) with mean \(\bar{x} \):

\[
\ell(\beta) = \log \beta + \frac{\bar{x}}{\beta} + \frac{1}{n} \sum_{i=1}^{n} e^{-x_i/\beta}
\]

Given an estimate \(\beta^{(t)} \), write out the update \(\beta^{(t+1)} \) after one iteration of gradient descent with step size \(\alpha \). Show your work in the box below.