Data Frames and Data Pipelines
In Python and R
Agenda

1. Pandas and Dplyr
 - The Data Frame
 - Data Pipelines

2. Examples: Homework 3

3. EDA
What are the data structures?

Pandas Data Structures

There are three fundamental data structures in pandas:

- Data Frame: 2D data tabular data.
- Series: 1D data. I usually think of it as columnar data.
- Index: A sequence of row labels.

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Party</th>
<th>%</th>
<th>Year</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obama</td>
<td>Democratic</td>
<td>52.9</td>
<td>2008</td>
<td>win</td>
</tr>
<tr>
<td>McCain</td>
<td>Republican</td>
<td>45.7</td>
<td>2008</td>
<td>loss</td>
</tr>
<tr>
<td>Obama</td>
<td>Democratic</td>
<td>51.1</td>
<td>2012</td>
<td>win</td>
</tr>
<tr>
<td>Romney</td>
<td>Republican</td>
<td>47.2</td>
<td>2012</td>
<td>loss</td>
</tr>
<tr>
<td>Clinton</td>
<td>Democratic</td>
<td>48.2</td>
<td>2016</td>
<td>loss</td>
</tr>
<tr>
<td>Trump</td>
<td>Republican</td>
<td>46.1</td>
<td>2016</td>
<td>win</td>
</tr>
</tbody>
</table>
Analogous Data Structures in R

- **Data Frame**: 2D tabular data.
- **Atomic Vectors**: Column of data of the same type.
- **Row names**: a sequence of row labels.

```r
## Candidate   Party            Percentage
## 0    Obama    Democratic         52.9
## 1    McCain   Republican        45.7
## 2    Obama    Democratic         51.1
## 3    Romney   Republican        47.2
```
What is a data frame, generally?

- 2D data structure
- type heterogeneous
- columns = variables, rows = observations
- implicit row and column indices

What *isn't* a data frame?

Matrix
- 2D data structure
- type *homogeneous*
- implicit row and column indices

Relation (in SQL)
- 2D data structure
- type heterogeneous *enforced via schema*
- columns = variables, rows = observations
- **no** row or column indices
Why do we have data frames?

“We have introduced into S a class of objects called data.frames, which can be used if convenient to organize all of the variables relevant to a particular analysis ...”

J. Chambers, T. Hastie, and D. Pregibon, (1990), *Statistical Models in S*

“Data frames are more general than matrices in the sense that matrices in S assume all elements to be of the same mode — all numeric, all logical, all character string, etc.” and “... data frames support matrix-like computation, with variables as columns and observations as rows, and, in addition, they allow computations in which the variables act as separate objects, referred to by name.”

J. M. Chambers, T. J. Hastie, et al. (1992), *Statistical Models in S*
Accessing data by name

Pandas data frame

Use `.loc[]`

```python
pandas_df.loc[[0, 1], ["Candidate", "Percentage"]]
```

```
##    Candidate  Percentage
##      0      Obama  52.9
##      1     McCain  45.7
```

R data frame

Use `[]`

```r
r_df[c("0", "1"), c("Candidate", "Percentage")]
```

```
##    Candidate  Percentage
##      0      Obama  52.9
##      1     McCain  45.7
```
Accessing data by position

Pandas data frame

Use `.iloc[]`

```
pandas_df.iloc[[0, 1], [0, 2]]
```

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Obama</td>
</tr>
<tr>
<td>1</td>
<td>McCain</td>
</tr>
</tbody>
</table>

R data frame

Use `[]`

```
r_df[c(1, 2), c(1, 3)]
```

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Obama</td>
</tr>
<tr>
<td>1</td>
<td>McCain</td>
</tr>
</tbody>
</table>
Data Wrangling with dplyr

- A grammar for data wrangling with a small number of functions that can be composed in powerful ways.
- Inspired by SQL - declarative.
- Focus constructing pipelines to get from raw data to the data product you're aiming for.
Accessing data

```r
select(r_df, Candidate, Percentage)
```

```
##   Candidate Percentage
## 0     Obama 52.9
## 1    McCain 45.7
## 2     Obama 51.1
## 3   Romney 47.2
```

```r
slice(r_df, c(1, 2))
```

```
##   Candidate        Party Percentage
## 1     Obama Democratic        52.9
## 2    McCain Republican        45.7
```

```r
slice(select(r_df, Candidate, Percentage), c(1, 2))
```

```
##   Candidate Percentage
## 1     Obama        52.9
## 2    McCain        45.7
```
Building Pipelines for a Nursery Rhyme

Most data wrangling requires multiple *operations*, just as a nursery rhyme has multiple *verbs*:

Little Bunny Foo Foo,
Hopping through the forest,
Scooping up the field mice,
And bopping them on the head.
Building Pipelines, take 1

One approach is to **break it down** step by step and take the output and overwrite the input.

```r
foo_foo <- hop(foo_foo, through = forest)
foo_foo <- scoop(foo_foo, up = field_mice)
foo_foo <- bop(foo_foo, on = head)
```

(example from *R for Data Science* (Wickham and Grolemund))
Building Pipelines, take 2

Another approach is to **nest** the functions inside one another.

```python
bop(
    scoop(
        hop(foo_foo, through = forest),
        up = field_mice
    ),
    on = head
)
```
Building Pipelines, take 3

Another more readable approach is to use the pipe operator (%>%), to pass the output of one function as the input to the next.

```r
foo_foo %>%
    hop(through = forest) %>%
    scoop(up = field_mice) %>%
    bop(on = head)
```

Relies upon the system being **closed** under these operations: *data frame in, data frame out.*

```r
r_df %>%
    select(Candidate, Percentage) %>%
    slice(1, 2)
```

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obama</td>
<td>52.9</td>
</tr>
<tr>
<td>McCain</td>
<td>45.7</td>
</tr>
</tbody>
</table>
Example: Food Safety

```r
## # A tibble: 3,752 x 9
## #  bid name address city state postal_code latitude longitude phone_number
##     <dbl> <chr> <chr> <chr> <chr>     <dbl>     <dbl>  <chr>            
##  1      3183 NEW E… 907 Irv… San … CA   94122   37.8 -122. 14157
##  2      91931 Gourn… 4605 Ge… San … CA   94118  -9999  -9999 14158
##  3      91826 The W… OFF THE… San … CA  -9999  -9999  -9999 14158
##  4      94935 94635… 24 Will… San … CA   94107  -9999  -9999 14158
##  5      70425 Peet’… 1509 SL… San … CA   94132  -9999  -9999 14158
##  6      2249 Ramzi… 0044 Mo… San … CA   94104   37.8 -122. 14158
##  7      99845    EAT C… 1450 AR… San … CA   94124  -9999  -9999 14158
##  8      93959 Willi… 2055 Si… San … CA   94124  -9999  -9999 14158
##  9      77404 Shabu… 219 Kin… San … CA   94107  -9999  -9999 14158
## 10      89282 Taque… Mission… San … CA  -9999  -9999  -9999 14158
## # … with 3,742 more rows
```

Question 1c: Assign top_names to the top 5 most frequently used business names, from most frequent to least frequent.
Question 1c: Assign top_names to the top 5 most frequently used business names, from most frequent to least frequent.

Starting Data

- Each row is a single business location
- \(n = 3752 \)
- \(p = q \)

Goal

- Count # of rows in each
- Group by name
- Sort by count
- Slice top 5

\(n \leq 3752 \)
```r
bus %>%
  group_by(name) %>%
  summarize(cnt = n()) %>%
  arrange(desc(cnt)) %>%
  slice(1:5)

## summarise() ungrouping output (override with .groups argument)

## # A tibble: 5 x 2
##    name                              cnt
##    <chr>    <int>
## 1 Peet's Coffee & Tea           14
## 2 Starbucks Coffee              9
## 3 STARBUCKS                      7
## 4 Proper Food                    6
## 5 Specialty's Cafe & Bakery      6
```

```r
bus %>%
  count(name) %>%
  arrange(desc(n)) %>%
  slice(1:5) %>%
  select(name)

## # A tibble: 5 x 1
##    name
##    <chr>
## 1 Peet's Coffee & Tea
## 2 Starbucks Coffee
```
Pandas and dplyr

```python
bus["name"][value_counts()[:5].index.values

## array(["Peet's Coffee & Tea", 'Starbucks Coffee', 'STARBUCKS',
## 'Proper Food', 'Starbucks'], dtype=object)
```

Notes on pandas:

- Data structures change: data frame > series > index > array.
- Combines operators ([]) and methods.

```r
bus %>%
count(name) %>%
arrange(desc(n)) %>%
slice(1:5) %>%
pull(name)
```

Notes on dplyr:

- Data structure doesn't change: the dataframe/tibble.
- Uses only functions.
A Pipeline in Pandas

```python
bus["name"].value_counts()[0:5].index.values
```

array(['Peet's Coffee & Tea', 'Starbucks Coffee', 'STARBUCKS',
'Proper Food', 'Starbucks'], dtype=object)

vs

```python
(bus["name"]
 .value_counts()[0:5]
 .index
 .values)
```

array(['Peet's Coffee & Tea', 'Starbucks Coffee', 'STARBUCKS',
'Proper Food', 'Starbucks'], dtype=object)

The pipeline form is ensures each operation is easily readable and distinct.
Question 6a

Let's see which restaurant has had the most extreme improvement in its rating, aka scores. Let the "swing" of a restaurant be defined as the difference between its highest-ever and lowest-ever rating. Only consider restaurants with at least 3 ratings, aka rated for at least 3 times (3 scores)! Using whatever technique you want to use, assign max_swing to the name of restaurant that has the maximum swing.

Note: The "swing" is of a specific business. There might be some restaurants with multiple locations; each location has its own "swing".

The city would like to know if the state of food safety has been getting better, worse, or about average. This is a pretty vague and broad question, which you should expect as part of your future job as a data scientist! However for the ease of grading for this assignment, we are going to guide you through it and offer some specific directions to consider.
The start of the pipeline

```r
## # A tibble: 14,031 x 10
## #  iid  date score type   bid timestamp year Missing Score  name addr
## # <chr> <chr> <dbl> <chr> <dbl> <date>     <dbl> <lgl> <chr> <chr>
## 1 1000... 04/0... 100 Rout... 100010 2019-04-03 2019 FALSE      ILLY... PI
## 2 1000... 08/1...  91 Rout... 100017 2019-08-16 2019 FALSE      AMIC... 47
## 3 1000... 05/2...  83 Rout... 100041 2019-05-20 2019 FALSE      UNCL... 36
## 4 1000... 04/2...  98 Rout... 100055 2019-04-25 2019 FALSE      Twir... 33
## 5 1000... 09/1...  82 Rout... 100055 2019-09-12 2019 FALSE      Twir... 33
## 6 1000... 08/1...  89 Rout... 100058 2019-08-16 2019 FALSE      SF P... 47
## 7 1000... 08/1...  76 Rout... 100059 2019-08-15 2019 FALSE      DUMP... 25
## 8 1000... 09/0... 100 Rout... 100069 2019-09-06 2019 FALSE      Miss... 14
## 9 1000... 03/2...  89 Rout... 100072 2019-03-26 2019 FALSE      SUBW... 23
## 10 1000... 08/2...  98 Rout... 100079 2019-08-27 2019 FALSE      POSI... 47
## # ... with 14,021 more rows
```
Constructing a pipeline (take 2)

Starting Data

Each row is an inspection that resulted in a score

n=14031

Goal

• slice top 1

n=14031

• sort by swing
 • select name

Each row is a single bid

p=10

• Group by bid
 • Calculate swing on each, returning 0 in count ≤ 3

n=14031

• only 1 row, the name with the max swing
A pipeline in R, take 1

```r
ins_named %>%
  group_by(bid) %>%
  mutate(n = n()) %>%
  filter(n >= 3) %>%
  mutate(swing = max(score) - min(score)) %>%
  ungroup() %>%
  arrange(desc(swing)) %>%
  select(name) %>%
  slice(1)
```

```r
## A tibble: 1 x 1
##  name
##  <chr>
## 1 Lollipop
```
A pipeline in R, take 2

```r
swing <- function(x) {
  if (length(x) < 3) {
    return(0)
  } else {
    return(max(x) - min(x))
  }
}

ins_named %>%
  group_by(bid) %>%
  mutate(swing = swing(score)) %>%
  ungroup() %>%
  arrange(desc(swing)) %>%
  select(name) %>%
  slice(1)
```

A tibble: 1 x 1
name
<chr>
1 Lollipot
Question 6b

What's the relationship between the first and second scores for the businesses with 2 inspections in a year? Do they typically improve? For simplicity, let's focus on only 2018 for this problem.

Plot these scores. That is, make a scatter plot to display these pairs of scores. Include on the plot a reference line with slope 1.
The start of the pipeline

```r
## # A tibble: 14,031 x 8
## #  iid   date       score type             bid   timestamp    year Missing Sc
## <chr> <chr>       <dbl> <chr>             <dbl> <date>      <dbl> <chr>
## 1 100010_2...  04/03/201...  100 Routine ... 100010  2019-04-03 2019 FALSE
## 2 100017_2...  08/16/201...  91 Routine ... 100017  2019-08-16 2019 FALSE
## 3 100041_2...  05/20/201...  83 Routine ... 100041  2019-05-20 2019 FALSE
## 4 100055_2...  04/25/201...  98 Routine ... 100055  2019-04-25 2019 FALSE
## 5 100055_2...  09/12/201...  82 Routine ... 100055  2019-09-12 2019 FALSE
## 6 100058_2...  08/16/201...  89 Routine ... 100058  2019-08-16 2019 FALSE
## 7 100059_2...  08/15/201...  76 Routine ... 100059  2019-08-15 2019 FALSE
## 8 100069_2...  09/06/201...  100 Routine ... 100069  2019-09-06 2019 FALSE
## 9 100072_2...  03/26/201...  89 Routine ... 100072  2019-03-26 2019 FALSE
## 10 100079_2...  08/27/201...  98 Routine ... 100079  2019-08-27 2019 FALSE
## # ... with 14,021 more rows
```
Constructing a pipeline into a plot

ins %>%
 filter(year == 2018) %>%
 group_by(bid) %>%
 mutate(n = n()) %>%
 filter(n == 2) %>%
 arrange(bid, timestamp) %>%
 ungroup() %>%
 mutate(order = rep(c("first_inspection", "second_inspection"), 535)) %>%
 select(bid, score, order) %>%
 pivot_wider(names_from = order,
 values_from = score) %>%
 ggplot(aes(x = first_inspection,
 y = second_inspection)) +
 geom_jitter() +
 theme_bw()
textFile = sc.textFile("hdfs://...")

Creates a DataFrame having a single column named "line"
df = textFile.map(lambda r: Row(r)).toDF(["line"])
errors = df.filter(col("line").like("%ERROR%"))
Counts all the errors
errors.count()
Counts errors mentioning MySQL
errors.filter(col("line").like("%MySQL%")).count()
Fetches the MySQL errors as an array of strings
errors.filter(col("line").like("%MySQL%")).collect()