DS-100 Midterm Exam

Fall 2017

	1
mail:@berk	keley.edu
tudent ID:	
Instructions:	
• This exam must be completed in the 1.5 hour time period ending at 8:30PM	М.
 Note that some questions have bubbles to select a choice. This means that you only select one choice. Other questions have boxes. This means you shou all that apply. 	
When selecting your choices, you must shade in the box/circle. Checkm likely be mis-graded.	arks will
You may use a single page (two-sided) study guide.	
Work quickly through each question. There are a total of 116 points on this	exam.
Honor Code:	
As a member of the UC Berkeley community, I act with honesty, integrity, and re others. I am the person whose name is on the exam and I completed this exam in ac with the honor code.	-
Signature:	

Syntax Reference

Regular Expressions

- "^" matches the position at the beginning of string (unless used for negation " [^] ")
- "\$" matches the position at the end of string character.
- "?" match preceding literal or sub-expression 0 or 1 times. When following "+" or "*" results in non-greedy matching.
- "+" match preceding literal or sub-expression *one* or more times.
- "*" match preceding literal or sub-expression *zero* or more times
- "." match any character except new line.

- "[]" match any one of the characters inside, accepts a range, e.g., "[a-c]".
- " () " used to create a sub-expression
- "\d" match any *digit* character. "\D" is the complement.
- "\w" match any *word* character (letters, digits, underscore). "\W" is the complement.
- "\s" match any whitespace character including tabs and newlines. \S is the complement.
- "\b" match boundary between words

Some useful re package functions.

re.split (pattern, string) split the string at substrings that match the pattern. Returns a list.

re.sub (pattern, replace, string)
apply the pattern to string replacing matching substrings with replace.
Returns a string.

Useful Pandas Syntax

fill_value=0.0) # value used for missing comb.

Data Generation and Probability Samples

For each of the following questions select the **single best answer**.

1.	[2 Pts] A political scientist is interested in answering a question about a country composed of three states with exactly 10000, 20000, and 30000 voting adults. To answer this question, a political survey is administered by randomly sampling 25, 50, and 75 voting adults from each town, respectively. Which sampling plan was used in the survey?
	cluster sampling
	stratified sampling
	— quota sampling
	snowball sampling
2.	[2 Pts] A deck with 26 cards labeled A through Z is thoroughly shuffled, and the value of the third card in the deck is recorded. What is the probability that we observe the letter C on the third card?
	$\bigcirc \ \frac{1}{26} \bigcirc \ \frac{3}{26} \bigcirc \ \frac{25}{26} \cdot \frac{24}{26} \cdot \frac{1}{26} \bigcirc \ \frac{1}{26} \cdot \frac{1}{26} \cdot \frac{24}{26} \bigcirc \ \text{None of the above.}$
3.	[3 Pts] Suppose Sam visits your store to buy some items. He buys toothpaste for \$2.00 with probability 0.5 . He buys a toothbrush for \$1.00 with probability 0.1 . Let the random variable X be the total amount Sam spends. What is $\mathbf{E}[X]$? Show your work in the space provided.
	\$1.10
	\$1.5
	 The toothpaste purchase may not be independent of the toothbrush purchase so we can't compute this expectation.
	You may show your work in the following box for partial credit:

4.	. [3 Pts] Suppose we have a coin that lands heads 80% of the time. Let the random variable X be the <i>proportion</i> of times the coin lands tails out of 100 flips. What is $Var[X]$? You must show your work in the space provided.				
	0.8	0.16	0.04	0.0016	O.008

5. A small town has 5 houses with the following people living in each house:

Suppose we take a **cluster sample** of 2 houses (without replacement), what is the chance that: (1) [2 Pts] Kim and Lars are in the sample \bigcirc 0 \bigcirc 1/20 \bigcirc 1/10 \bigcirc 1/6 \bigcirc 1/5 \bigcirc 2/5 You may show your work in the following box for partial credit: (2) [2 Pts] Kim, Abe, and Ben are in the sample \bigcirc 1/20 \bigcirc 1/10 \bigcirc 1/6 \bigcirc 1/5 \bigcirc 0 \bigcirc 2/5 You may show your work in the following box for partial credit: (3) [1 Pt] Kim and Dan are in the sample - Select all that apply ☐ The same as the chance Kim and Lars are in the sample ☐ The same as the chance Kim, Abe, and Ben are in the sample \square Neither of the above

Data Cleaning and EDA

6.	True or Faise. For each of the following statements select true or faise.
	(1) [1 Pt] Exploratory data analysis is the process of testing key hypotheses.
	○ True ○ False
	(2) [1 Pt] The structure of the data describes how it is formatted and organized.
	○ True ○ False
	(3) [1 Pt] Throughout the process of exploratory data analysis it is often necessary to tranform and clean data.
	○ True ○ False
	(4) [1 Pt] During the data cleaning process it is generally a good idea to drop records the contain missing values.
	○ True ○ False
7.	In homework 3, we analyzed ride sharing data comparing the weekday and weekend pattern for both casual and registered riders.
	(1) [1 Pt] On weekdays , the number of casual riders was most frequently the number of registered riders.
	○ higher than ○ lower than ○ similar to
	(2) [1 Pt] Which group of riders demonstrated a pronounced bi-modal daily usage pattern:
	 Casual Riders Registered Riders Both casual and registered riders.

8. Using the following snippet of data to answer each of the questions below.

Business.data
"business_id","name","address","phone"
lo,"TIRAMISU KITCHEN","033 BELDEN PL","+14154217044"
19,"LIFESTYLE CAFE","1200 VAN NESS AVE","+14157763262"
24,"OMNI S.F. HOTEL"," ","99999999999999"
42, "The "Best", Food!", "500 CALIFORNIA ST", "+14156211114"
43,"The "Best", Food!","3716 Cesar Chavez","+14156211114"
(1) [1 Pt] Which of the following best describes the format of this file.
○ Raw Text
○ Comma Separated Values
○ JSON
(2) [1 Pt] Which of the following best describes the granularity of each record?
Restaurant Chains
 Individual Restaurant Locations
○ Strings
○ Daily
(3) [4 Pts] Select all the true statements.
☐ From the available data the business_id appears to be a primary key.
☐ There appear to be no missing values
\Box While the data appears to be quoted there may be issues with the quote character.
☐ There are nested records.
\square None of the above statements is true.

Transformations and Smoothing

- 9. [3 Pts] Which of the following are reasonable motivations for applying a power transformation? **Select all that apply**:
 - ☐ To help visualize highly skewed distributions
 - ☐ Bring data distribution closer to random sampling
 - \Box To help straighten relationships between pairs of variables.
 - ☐ Reduce the dimension of data
 - ☐ Remove missing values
 - \square None of the above
- 10. [3 Pts] Which of the following transformations could help make linear the relationship shown in the plot below? **Select all that apply**:
 - $\square \, \log(y) \quad \square \, x^2 \quad \square \, \sqrt{y} \quad \square \, \log(x) \quad \square \, y^2 \quad \square$ None of the above

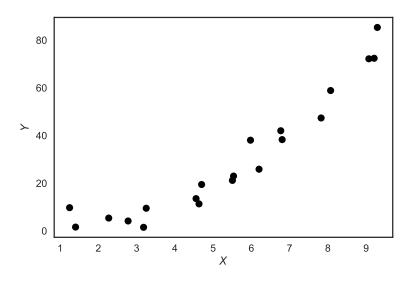


Figure 1

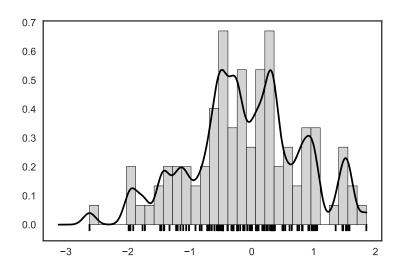


Figure 2

11. [2 Pts] The above plot contains a histogram, rug plot, and Gaussian kernel density estimator. The Gaussian kernel is defined by:

$$K_{\alpha}(x,z) = \frac{1}{\sqrt{2\pi\alpha^2}} \exp\left(-\frac{(x-z)^2}{2\alpha^2}\right)$$

Judging from the shape of separate standing peaks, which of the following is the most likely value for the kernel parameter α .

$$\bigcirc \ \alpha = 0 \quad \bigcirc \ \alpha = 0.1 \quad \bigcirc \ \alpha = 10 \quad \bigcirc \ \alpha = 100$$

Regular Expressions

12.	[2 Pts] Select all the strings that fully match the regular expression: [^dp]an
	\square Dan \square pan \square fan \square man \square None of the above.
13.	[2 Pts] Select all the strings that fully match the regular expression: <[a-z]*@\w+.edu>
	\square <pre><xin.wang@berkeley.edu></xin.wang@berkeley.edu></pre>
	\square <@berkeley\$edu>
	\square <pre><xinwang@berkeley#edu></xinwang@berkeley#edu></pre>
	\square <pre><xinwang@.edu></xinwang@.edu></pre>
	☐ None of the above strings match.
14.	[2 Pts] Select all the strings that fully match the regular expression: ^Go.*
	□ Way to ^Go!
	☐ Go Bears!
	☐ go trees?
	☐ None of the above strings match
15.	[2 Pts] What is the result of evaluating the following python command?
	len(re.split(r"\d+", "You get a 99.9 on the exam."))
	\bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5
16.	For the following tasks, write the corresponding Python code or regular expression.
	(1) [2 Pts] Write a regular expression that only matches sub strings consisting of an a immediately followed by zero or one b characters.
	regx = r'
	(2) [3 Pts] Suppose we've run the code below:
	text = 'Data\t \t Science 100'
	Use a method in the re module to replace all the continuous segments of spaces with a single comma. The resulting string should look like "Data, Science, 100".
	re

DataFrames, Joins, and Aggregation

17. The ti and fare DataFrames contain data of the people aboard the Titanic when it crashed:

>>> ti.head()					>>	> fare.he	ad()		
	survived	class	sex	id			fare	alone	id
0	0	Third	male	1410		0	73.5000	True	1457
1	1	First	female	1522		1	9.2250	True	1645
2	1	Third	female	1864		2	8.6625	True	1716
3	1	First	female	1687		3	59.4000	False	1367
4	0	Third	male	1173	1	4	18.0000	False	1639

Both tables contain one row for each passenger, uniquely identified by the id column. Here's a description of the columns in each DataFrame:

DataFrame ti	DataFrame fare
survived: 1 if the person survived, else 0	fare: Price of ticket in USD
class: ticket class (First, Second, or Third)	alone: True if the person was alone at purchase.
sex: Sex of person (male or female)	

Fill in the blanks to compute the following statements. You may assume that the pandas module is imported as pd. You may not use more lines than the ones provided.

- (1) [2 Pts] The total number of survivors.
- (2) [4 Pts] The proportion of females who survived (a float).

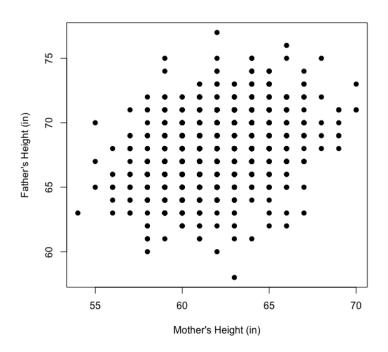
(3) [4 Pts] A DataFrame containing the proportion of survivors for each sex. It should look like:

female 0.742038 male 0.188908

survived

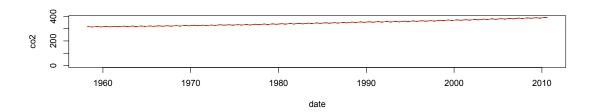
Second

First

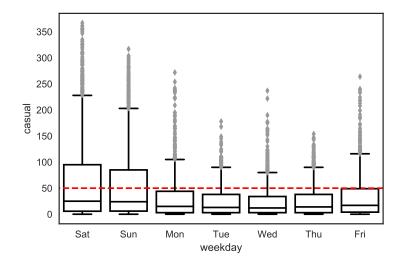

class

Third

(4)) [5 Pts]	A DataFrame containing the proportion of	sex	sex				
(4)	[3 Pts]	survivors for each sex and class. It should	female	0.968085	0.921053	0.500000		
		look like:	male	0.368852	0.157407	0.135447		
(5)		A DataFrame containing the proportion of sur at bought their ticket alone. The table should				_		
		ferent numbers.				· /		
	merge	d =						
	(merae	ed						
	(merge	<u></u>						
)		
18. [3 P		the following list select all statements that a	ire true f	or Pandas	s Data Fra	ames.		
		l data frames must have an index.						
		l columns must be the same type.						
	☐ Yo	ou can always index a record by its row numb	er.					
	☐ Mi	issing values in string columns are always en	coded as	s NaN.				
	□ No	one of the above						


Visualizations

19. The figure below is a scatter plot of the heights of mothers (in) and fathers (in) of a sample of 1000 UC Berkeley students.



- (1) [2 Pts] What is the main problem with this plot?
 - O Choice of scale
 - O Jiggling the baseline
 - Aspect ratio
 - Overplotting
 - Lack of context
 - O Perception (length, angle, area)
- (2) [2 Pts] What is the remedy for this problem?
 - Overlay plots
 - Jitter values
 - O Use color to condition on student's gender
 - Transform one variable or the other or both
 - Improve labels and legends

20. [2 Pts] The following figure is a line plot of CO_2 emissions over time. What is the main problem with this plot?

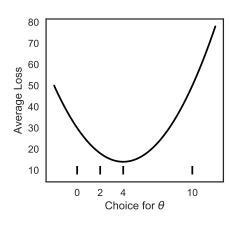
- Empty data region
 Jiggling the baseline
 Overplotting
- Lack of context Perception (length, angle, area)
- 21. Consider the following visualization of the number of casual riders per hour by day of the week, which has been constructed from the bike sharing data used in Homework 3.

- (1) [2 Pts] Which days of the week frequently (at least 75% of the time) had fewer than 50 casual riders? **Select all that apply.**
 - \square Saturday \square Sunday \square Monday \square Tuesday \square None of the above.
- (2) [3 Pts] Which of the following describe conclusions that we can draw about the distribution of rider counts on Tuesdays using the above plot? **Select all that apply.**
 - \square Skewed left \square Symmetric \square Skewed right \square Unimodal \square Has outliers
 - \square None of the above

Estimation and Loss Minimization

22. Consider the following loss function.

samplepopulation

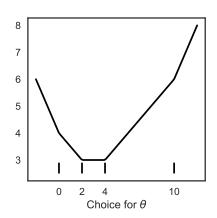

$$L(\theta, x) = \begin{cases} 4(\theta - x) & \theta \ge x \\ x - \theta & \theta < x \end{cases}$$

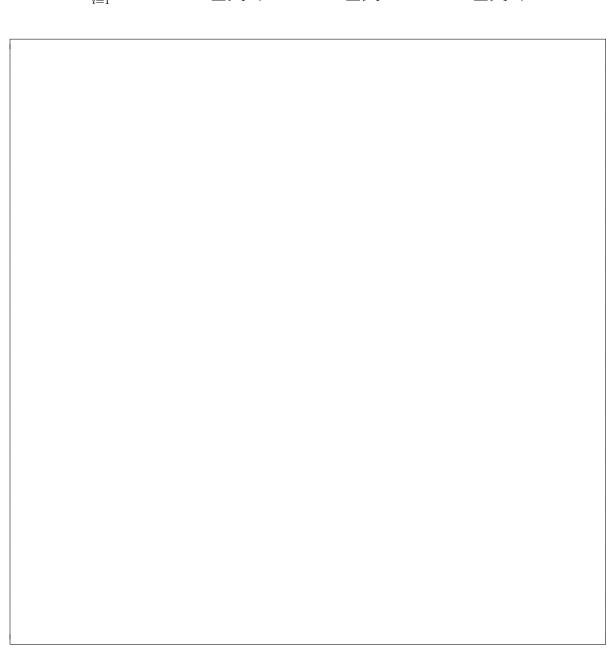
☐ The loss f☐ The loss f☐ None of the	function is concave. Function is convex. Function is smooth. The above statements a higher $x_1, \dots x_n$, which	re true.	s the average loss? Show
$\bigcirc 20^{th}$ percentile	$\bigcirc \ 25^{th}$ percentile	\bigcirc 75 th percentile	\bigcirc 80 th percentile
(3) [2 Pts] The optimal		In for the	

23. We propose the following simple model for a dataset consisting of four points $\mathcal{D} = \{0, 2, 4, 10\}$:

$$y = \theta^*$$

Use the following plots of loss functions for this model to answer the following questions.




Figure 3

- (1) [2 Pts] Which choice(s) for θ minimize the average squared loss? Select all that apply.
 - \square 2 \square 3 \square 4 \square 10 \square None of the above
- (2) [2 Pts] Which choice(s) for θ minimize the average absolute loss? **Select all that apply.**
 - \square 2 \square 3 \square 4 \square 10 \square None of the above
- (3) [2 Pts] Suppose we add an observation at $y_5 = 100$. Which choice(s) for θ minimize the average absolute loss? **Select all that apply.**
 - \square A value smaller than 3 \square 3 \square 4 \square 5 \square A value larger than 5
- (4) [2 Pts] Which loss function is most sensitive to outliers?
 - () absolute loss () squared loss () Huber loss

24. [4 Pts] Which θ minimizes the following loss function for a dataset D comprised of (x_i, y_i) pairs? Show your work in the space provided.

$$L(\theta, D) = \sum_{i=1}^{n} (y_i - \theta x_i)^2$$

$$\bigcirc \ \theta = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i} \quad \bigcirc \ \theta = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \quad \bigcirc \ \theta = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} \quad \bigcirc \ \theta = \frac{\sum_{i=1}^{n} y_i^2}{\sum_{i=1}^{n} x_i^2}$$

Sampling Distribution, Bootstrapping, and Confidence Intervals

25.	Tru	e or False. For each of the following statements select true or false.			
	(1) [1 Pt] Suppose we have 100 samples drawn independently from a population. If we construct a 95% confidence interval for each sample, we expect 95 of them to include the sample mean.				
		○ True ○ False			
	(2)	[1 Pt] The law of large numbers tells us that as the sample size grows, the average of a random sample with replacement from a population gets closer to the population average			
		○ True ○ False			
	(3)	[1 Pt] We often prefer a pseudo-random number generator because our simulations results can be exactly reproduced by controlling the seed.			
		○ True ○ False			
	(4)	[1 Pt] As the sample size increases, the bootstrapped sampling distribution of a statistic will always become roughly normal.			
		○ True ○ False			
26.	_	Pts] Suppose we have a census of household incomes for the entire state of California ich of the following histograms would most closely resemble a normal curve?			
		\bigcirc A histogram of 10000 sample means from samples of size $n=1000$.			
		\bigcirc A histogram of incomes from a SRS of $n=10000$ households.			
		○ A histogram of incomes from the entire census.			
		 None of the above would resemble a normal distribution. 			

27. [5 Pts] Suppose we have a Pandas Series called **thePop** which contains a census of **25000** subjects. We also have a simple random sample of **400** individuals saved in the Series **theSample**. We are interested in studying the behavior of the bootstrap procedure on the simple random sample. Fill in the blanks in the code below to construct **10000** bootstrapped estimates for the median.

End of Exam