DS 100/200: Principles and Techniques of Data Science

Date: March 6, 2020

Discussion #7

Name:

Visualizing Gradients

1. On the left is a 3D plot of $f(x, y) = (x - 1)^2 + (y - 3)^2$. On the right is a plot of its **gradient** field. Note that the arrows show the relative magnitudes of the gradient vector.

- (a) From the visualization, what do you think is the minimal value of this function and where does it occur?
- (b) Calculate the gradient $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^T$.
- (c) When $\nabla f = \mathbf{0}$, what are the values of x and y?

Gradient Descent Algorithm

2. Given the following loss function and $\mathbf{x} = (x_i)_{i=1}^n$, $\mathbf{y} = (y_i)_{i=1}^n$, β^t , explicitly write out the update equation for β^{t+1} in terms of x_i , y_i , β^t , and α , where α is the constant step size.

$$L(\beta, \mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} \left(\beta^2 x_i^2 - \log(y_i) \right)$$

- 3. (a) The learning rate α can *potentially* affect which of the following? Select all that apply. Assume nothing about the function being minimized other than that its gradient exists. You may assume the learning rate is positive.
 - \Box A. The speed at which we converge to a minimum.
 - \Box B. Whether gradient descent converges.
 - \Box C. The direction in which the step is taken.
 - \Box D. Whether gradient descent converges to a local minimum or a global minimum.
 - (b) Suppose we run gradient descent with a fixed learning rate of $\alpha = 0.1$ to minimize the 2D function $f(x, y) = 5 + x^2 + y^2 + 5xy$.

The gradient of this function is

$$\nabla_{x,y}f(x,y) = \begin{bmatrix} 2x+5y\\ 2y+5x \end{bmatrix}$$

If our starting guess is $x^{(0)} = 1, y^{(0)} = 2$, what will be our next guess $x^{(1)}, y^{(1)}$?

(c) Suppose we are performing gradient descent to minimize the empirical risk of a linear regression model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2$ on a dataset with 100 observations. Let \mathcal{D} be the number of components in the gradient, e.g. $\mathcal{D} = 2$ for the equation in part b. What is \mathcal{D} for the gradient used to optimize this linear regression model?