

Normal Equations

> Solution to the least squares model:

$$\hat{\theta} = \arg\min \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} \theta_j \phi_j(x_i) \right)^2$$

> Given by the normal equation:

$$\hat{\theta} = \left(\Phi^T \Phi\right)^{-1} \Phi^T Y$$

> You should know this!

You should know the geometric derivation ...

The Normal Equation $\hat{\theta} = \left(\Phi^T\Phi\right)^{-1}\Phi^TY$ $\hat{\theta} = \left(\Phi^T\Phi\right)^{-1}\Phi^TY$ Note: For inverse to exist Φ needs to be full column rank. \rightarrow cannot have co-linear features This can be addressed by adding regularization ... In practice we will use regression software (e.g., scikit-learn) to estimate θ

Least Squares Regression in Practice

- ➤ Use optimized software packages
 - > Address numerical issues with matrix inversion
- > Incorporate some form of regularization
 - Address issues of collinearity
 - Produce more robust models
- > We will be using scikit-learn:
 - http://scikit-learn.org/stable/modules/linear_model.html
 - See Homework 6 for details!

Scikit Learn Models

- > Scikit Learn has a wide range of models
- > Many of the models follow a common pattern:

Ordinary Least Squares Regression

 $\textbf{from} \text{ sklearn } \textbf{import } \text{linear_model}$

f = linear_model.LinearRegression(fit_intercept=True)

f.fit(train_data[['X']], train_data['Y'])

Yhat = f.predict(test_data[['X']])

Notebook Demo

Recipe for Successful Generalization

- 1. Split your data into training and test sets (90%, 10%)
- 2. Use only the training data when designing, training, and tuning the model
 - Use **cross validation** to test generalization during this phase
 - Do not look at the test data
- 3. Commit to your final model and train once more using **only** the training data.
- 4. Test the final model using the **test data**. If accuracy is not acceptable return to (2). (Get more test data if possible.)
- 5. Train on all available data and ship it!

Returning to Regularization

Basic Idea
$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n \mathbf{Loss}\left(y_i, f_{\theta}(x_i)\right)$$
 Such that:
$$f_{\theta} \ \text{ is not too "complicated"}$$
 Can we make this more formal?

Basic Idea $\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$ Such that: $\text{Complexity(} f_{\theta} \text{)} \leq \beta$

Idealized Notion of Complexity
$$\operatorname{Complexity} \big(\ f_\theta \big) \leq \beta$$
 > Focus on complexity of **linear models:** > Number and kinds of features
$$\text{> Ideal definition:}$$

$$\operatorname{Complexity}(f_\theta) = \sum_{j=1}^d \mathbb{I} \left[\theta_j \neq 0 \right] \text{ $\frac{Number of non-zero parameters}}$$
 > Why?

Generic Regularization (Constrained)

ightharpoonup Defining $\mathbf{Complexity}(f_{\theta}) = R(\theta)$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$$

Such that: $R(\theta) \leq \beta$

> There is an equivalent unconstrained formulation (obtained by Lagrangian duality)

Generic Regularization (Constrained)

ightharpoonup Defining $\mathbf{Complexity}(f_{\theta}) = R(\theta)$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i)) + \lambda R(\theta)$$
Regularization

> There is an equivalent unconstrained formulation (obtained by Lagrangian duality)

- Value of λ determines bias-variance tradeoff
- ➤ Larger values → more regularization → more bias → less variance
- Determined through cross validation

Using Scikit-Learn for Regularized Regression import sklearn.linear_model

- \triangleright Regularization parameter $\alpha = 1/\lambda$
 - ► larger α → less regularization → greater complexity → overfitting
- ➤ Lasso Regression (L1)
- linear_model.Lasso(alpha=3.0)
 linear_model.LassoCV() automatically picks α by cross-validation
- Ridge Regression (L2)
- > linear_model.Ridge(alpha=3.0)
- \blacktriangleright linear_model.RidgeCV() automatically selects α by cross-validation
- ➤ Elastic Net (L1 + L2)
- > linear_model.ElasticNet(alpha=3.0, l1_ratio = 2.0)
 > linear_model.ElasticNetCV() automatically picks \alpha by cross-validation

Standardization and the Intercept Term

$$\mbox{Height} = \theta_{\mbox{\scriptsize large-in_seconds}} + \theta_{\mbox{\scriptsize large-in_tons}} \mbox{\ensuremath{\mbox{\sc Model}}} \mbox{\e$$

> Regularization penalized dimensions equally

\succ Standardization

- Ensure that each dimensions has the same scale
- > centered around zero

> Intercept Terms

- Typically don't regularize intercept term
 Center y values (e.g., subtract mean)

Standardization For each dimension k:

or each dimension
$$k$$
: $z_k = rac{x_k - \mu_k}{\sigma_k}$