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Modeling and Estimation Leo?rr\mge) Prediction (Testing) .
Sometimes also called inference and scoring
fraining Data ].DeAfine the model 1. Receive a new query point
:IL/: 5= fo(z) =00 + bhx T
~—— 2.Choose ollosi » 2. Make prediction using
. Y L(§) = - Z (yi — fo(z:))? IeorAned model
X 3. Minimize tht—;l:olss y= fé ($) J
= arg mein L(#) 3. Test Error (using squared loss) i : x . -
(= f3(@)" = (v = 9)’
Training Idedlized Analysis of Squared Error Quontes n e re
ObjeCﬁ\/e ObjeCTive Training on a random sample of data from the population.
1 & 2 . 5 A 1 2
argmemﬁ_z;(yi—fa(xi)) argmin B {(y—fe(x)) ] (X0 Yi) ~ Plz,y) wp 0= argl%nﬁ;(yi_f"(&))

> Minimize our expected
prediction error over all
possible test points

» Minimize error on training data
» sample of data from the world
> estimate of the expected error

» Ideal Goal

> We can compute this directly
» Can't be computed ... ®

» But we can analyze it!

Tesﬁng at a given query point X and computing expected squared error
E|(Y - f(2)?
2

Expectation is taken over
all possible training datasets

Expectation is taken over
all possible Y observations.
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In the last lecture we showed that

Obs. Var. + (Bias)?2 + Mod. Var.

Other terminology:

“Noise” + (Bias)2+ Variance

Assuming 0 mean observation
noise and frue function h(x)

Y =h(z)+e

Obs. Variance
“Noise"

(Bias)?

E [(E[ ()] ffé(w))Q] Model Variance

Assuming 0 mean observation
noise and true function h(x)

Y =h(z)+e¢

Alternative proof

Courtesy of Allen Shen

E[(Y - f;@)°] =E[Y2-2£,@)Y + @)
Linearity of Expectation = B [Yz] —E[2f;(x)Y] +E {fgz(x)]

Definionofy = B [(h(I) — 5)2} —E [Qfé(I)yr] +E {fg(.ﬁ)]

E [(h(z) — €)?] = h*(z) — 2h(z)E [€] + E [¢?]
A\Y A
o O Defn’ of e

Bonus study materiall

E [(Y - fé(x))z} =E {Yz —2f3(@)Y + f(?(w)]
Linearity of Expectation = & [YQ] —-E [2fé(:ﬂ)Y} +E [f:(x)}

pefniionofy = E [(h(z) — €)?] — E [2f;(2)V] + E [f(?(x)}

E [(h(z) — €)?] = h*(z) — 2h(z)E ] + E [¢’]
\\O \\Oe Defn’ of ¢

=h(z)*+0° —E[2f;(z)Y] + E {f:(r)]

LBonus study material!

E [(y - fé(x))z] -E [Y? —2f;(x)Y + fg(m)}
= h(z)?+ 02— E[2f)(@)V] + E [fg(x)}
A EETSS = h@)? + 0* = 2B [f;@)] E[Y] + B[ £2(@)]

efinit

. Definition of Y .
= h(2)* + 0> — 2B [f,()| B[h(z) + ] + B [fg(a:)}
Linearity of expectation

= h(@)? + 0% = 2 [£;(2)] h(x) + B [13(2)]

Assuming 0 mean observation
noise and true function h(x)

Y =h(z)+e

Bonus study materiall

E [(y - f&(x))z} -E {W —2fy (@)Y + fg(:z:)]

= h(@)? +0* = 2E [fy(2)] h(x) + E [ f2(x)]

Definition of Variance

Var [f;] = B[f2(x)] - E [£; ()]’

= h(2)? 4 0® — 2B [f;(x)] h(z) + E [f,(2)]” + Var [f;(z)]

Rearranging terms

= 0% + h(z)? = 2E [f,(2)] h(x) + E [f;(2)]” + Var [f;(2)]

=02+ (h(a:) —-E [fé(x)} )2 + Var [fé(x)}

Bonus study materiall
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Summary
s 1 2
Xi,Y5) ~ Pz, 0= = Y — fo(X;
(X3, Y:) ~Pz,y) wp argmo}nn;( fo(X4))
Expectation is taken over

all possible Y observations.

E[(V - 1@)°] =0+ (h(e) - B[f;@)])” + Var ;)]
Obs. Var. + (Bias)2+ Mod. Var.

Expectation is taken over
all possible training datasets

Bias = h(z) — E [fy(z)]

The expected deviation between the predicted value
and the frue value

» Depends on both the:
» choice of f
» learning procedure

> Under-fiting |, .+

All possible functions

QOSS'\b\e 5] VQ/U@
e

Bias
True
Function

Observation Variance = E [(v - h(z))*] = o>
the variability of the random noise in the process we are

frying to model
oA 7
» ’ ’/\.:\6 1° .\-:/

» measurement variability

» stochasticity

» missing information

Beyond our control
(USUG"Y) -10 -5 [ H 10

Estimated Model Variance =
Var [f;(x)] = E[(f;(x) = E[f;(2)])]

variability in the predicted value across different training
datasets

» Sensitivity to variation in

the fraining data w0 L AP
> Poor generalization J f ”'
> Overfitting - % M VE

The Bias-Variance Tradeoff

Estimated Model Variance

We want to decrease both bias and variance but often
decreasing one results in an increase in the other.

T—

Bias Variance Plot

o
€

Increasing Model Complexity =
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More Data supports More Complexity Model Complexity

» Roughly: capacity of the model to fit the data

» Many different measures and factors
» Covered in machine learning class

» Dominant factors in linear models
» Number and types of features

» Regularization m

Return to this

[ Increasing Model Complexity = |

Regression

» Estimating relationship between X and Y .
» Yis a quantitative value

Regression Ond » We will soon see X can be almost anything ...
Linear Models X

fo e
Model —o0 00
Least Squares Linear Regression Linear Models and Feature Functions

One of the most widely used tools in machine learing and data science Linear in the Parameters

d
Model i=folx) =>_0;0;(x)
Jj=1

d .
9= fol@) =3 0;0;(x)
-
Feature Functions Designing the feature functions is a big part of machine

Loss Minimization learning and data science.

1N 3 ’ Feature Funct

j — in— o bl eature Functions

0 = arg min n ; Yi Zl 0i6;(wi) » capture domain knowledge

Wewilemio = > substantial contribute to expressivity (and complexity)

solving this soon!
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Linear Models and Feature Functions

J Linear in the Parameters
§=fo(w) =D _0;0(x)
j=1
Feature Functions

For Example: Domain: € R model: fo(z) = 612 + 62

Features:

Adding a “constant” feature
bi(z) =z function (z) =1
ba(x) =1 - e

2 o is @ common method to
. infroduce an offset (also
sometimes called bias) term.

Linear Models and Feature Functions

4 Linear in the Parameters
§=folx) = 0,0;(x)
=1

Feature Functions

ForExample: = € R fop(x) = 012 + O sin(z) + 05 sin(5x)

Features: — PR
o =10 & This is a linear model!
o1 (-T) =z ! :2 - fg Linear in the parameters
= 0| 3 = 1.
¢2(z) = sin(x) .
ba@) = sinGz)

Linear Models and Feature Functions

d Linear in the Parameters
7= fol) = 3 0;0;(x) — AT
j=1

For Example: z € R
fo(x) = 612129 + 63 cos(z2x1) + 031 (21 > 29]

Features:

$1(x) = 2122 .
¢a2(z) = cos(wamwy) ©
3(x) =@ >z

20

€ This is a linear model!

Linear in the parameters

<

Linear Models and Feature Functions

Linear in the Parameters

d
0= folz) = 3 0765 (o) — RIS
j=1

What if X is a record with numbers, text, booleans, etc...

X Y
uid_lage state _hasBought [review ____Jrating
0 32 20

NY True "Meh."”

42 50 Answer: oexd o”uf of 4.5
57 16 , Feature engineering R o 41

How do we define §b2

Feature Engineering

Keeping it Real

Feature Engineering

» The process of tfransforming the inputs to a model to
improve prediction accuracy.
> Akey focus in many applications of data science

» Feature Engineering enables you to:
» capture domain knowledge (e.g., periodicity or relationships
between features)
> encode non-numeric features to be used as inputs to models
» express non-linear relationships using linear models
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Predict rating from review information

uid lage state hasbought review | ratng
0 32 NY True "Meh." 2.0

42 50 WA True "Worked out of 4.5
the box ..."

57 16 CA NULL “Hella tofs lityo ..." 4.1

Schema:
RatingsData(uid INTEGER, age FLOAT,

state STRING, hasBought BOOLEAN,
review STRING, rating FLOAT)

RatingsData(uid INTEGER, age FLOAT,
state STRING, hasBought BOOLEAN,
review STRING, rating FLOAT)

As a Linear Model?

El e e e
0 32 NY True "Meh."

2.0
X= 42 50 WA True "Worked out of Y: 4.5
the box ..."
57 16 CA NULL “Hella fots lit yo 41
Canluse X and Y directly b 0o
in a linear model X

» Nol! Why?2
» Text, Categorical data,
Missing values...

Basic Transformations

» Uninformative features: (e.g., UID)
> Is this informative (probably not?)
» Transformation: remove uninformative features (why2)
» Could increase model variance ...

» Quantitative Features (e.g., Age
» Transformation: May apply non-linear transformations (e.g., log)

» Transformation: Normalize/standardize (more on this later ...)
» Example: (x - mean)/stdev

One Hot Encoding (dummy encoding)

» Transform categorical feature into many binary features:
state | [ AK | [CAL._INY| . (WAl . W]
NY o .. o . . o .. o0
WA » o .. 0o .. o .. . o

cA o .- o .. o . lo

Origin of the term: multiple “wires" for
possible values one is hot ...

¢1(z) =1z is ?AK’]

3
» Categorical Features (e.g., State) Corresponding ¢2(x) -1 [ac is ’AL’] o Cat
» How do we convert State into meaningful numbers2 feature =
> Alabama=1 ..., Utah = 50 2 functions — @5 Dog
» Implies order/magnitude means something ... we don't want that ... See notebook d
» Transformation: One-hot-Encode for example ¢50($) =1 [aj is iwyi] = U Fish
code.
Encoding Missing Values Encoding categorical data
> Missing values in Quantitative Data > Categorical Data 2 One-hot encoding:
» Try to impute (estimate) missing values... (tricky) B [ AL . Jcal .. [NY ] .. [wa].. [wy]
» Substitute the sample mean NY IS “ 1o | - ©
> Try more sophisticated algorithms to predict the missing value ... WA » 0 0 0 “ 0
» Add a binary field called “missing_col_name"”. (why?2) =
» Sometimes missing data is signail O Lo “ 2 MON I MO N O
» Missing values in Categorical Data » Text Data
» Add an addition category called “missing_col_name” » Bag-of-words & N-gram models
> Some Boolean values can be converted info L= o ¢
> True => +1, False => -1, Missing => 0 “Learning about 5 ,% £ £ g
machine - T8 5 8 8 §
s 0 8 5 2 9 £ R
learning is fun.
Vector (10 0 1 « 2 -1 .0




Bag-of-words Encoding

» Generadlization of one-hot-encoding for a string of text:

“Learning about

machine ’
learning is fun.”

aardvark
aardwolf

~ learning
— machine
o zyzzyva

— fun

Vector

o
o

» Encode text as along vector of word counts (Issues2)
» Long = millions of columns >typically high dimensional and very sparse
» Word order information is lost... (is this an issue?2)
» New unseen words at prediction (test) time - drop them ...

» Abagis another term for a multiset: an unordered collection which may
contain multiple instances of each element.

» Stop words: words that do not contain significant information
» Examples: the, in, at, or, on, a, an, and ...

» Typically removed

| made this art piece
in graduate school

Do you see the stop
word?

There used to be a
dustbin and broom

... but the janitors
goft confused ...
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N-Gram Encoding

» Sometimes word order matters:

The book was well written
but I did not enjoy it.

The book was not well
written but I did enjoy it.

» How do we capture word order in a “vector” model2
» N-Gram: “Bag-of- sequences-of-words”

Removed

stop words book well written not enjoy

book well

well written

written not

not enjoy

2-Gram Encoding

©  oardvark airlines

o apple pen
book well
not enjoy
well written

Vector

.
o
c
=
gﬁ
o
£ ¢
3 3
0

N-Gram Encoding

» Sometimes word order matters:

The book was well written
but I did not enjoy it.

The book was not well
written but I did enjoy it.

» How do we capture word order in a “vector” model?
> N-Gram: “Bag-of- sequences-of-words"

» Issues:
> Can be very sparse (many combinations occur only once)
> Many combinations will only occur at prediction time = drop ..
> Often use hashing approximation:
> Increment counter at hash(“not enjoy") collisions are okay

Feature Transformations to Capture
Domain Knowledge
» Feature functions capture domain knowledge by

infroducing additional information from other sources
and/or combining features

Could do a database lookup

(251' (x) = iSWillteI'(xdate, xlocation)

» Encoding non-linear patterns o

¢i(z) = cos (—x}g“w + 7r) o

Diurnal patterns.

10 15
Hour of day (24hr)
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[R<T - [ [ [ oo Jresteus oot
The Feature Matrix P The Feature Matrix ® 2 =, = 2 2 ¢

o .. 0 .. O 16 0 1

Entirely Quantitative Values

n — = b Rows of the @ matrix
P c Rnxd - ¢ [X] - — (1(2)) _ correspond to records.
X DataFrame dc Rnxd Dataframe Columns of the ® matrix
boT n correspond to features.
s - Nt —
e O [ [ [ o] @ ] 0 4
the box..." ¢ 0 .. 0 .. 0 50 1 0
5 16 cA N “Hella fofs f.." 0 .. 0 .. 0 16 0 1
Entirely Quantitative Values
Making Predictions Summary of Notation
™ ¢ (z(l)) B Rows of the @ matrix
o c R"Xd - ¢[X] - 0(1(2)) correspond fo records.
DataFrame . Columns of the & matrix
P (x(")) / correspond to features.
Prediction d -
(_0(1x|))_ | g M
o _af - |l=spay—||! (@) Feature Linear
Y= fG(X) =20 = ‘ ¢_( ) ‘ 0 y—‘ Engineering Regression
\_rp(:r,( >)_ | Q)
Optimizing the Loss (Bonus Material) Optimizing the Loss (Bonus Material)
Deriving the Normal Equation
2
n d
1 o o 1
L(6) = = Slvi-Y 065w | =0V - )Ty —Y) L(6) = - (YTY —2Y7®0 + 677 09)
i=1 j=1 m " — 1 Rule/1 Rulg/2 Useful Matrix Derivative Rules:
T T T’ ’ _ 'ﬂ‘ Taking the Gradient of the loss
Ly —a0)" (v - a0 N B 2.7y, 2gr Vg (46) = AT
=— (Y —20)" (V¥ - o0) o Vol (0) = =D @7V 4+ 20700 | G, (97 40) = A0 + AT
1 Setting the gradient equal to 0 and solving for 6:
== (YTY —2v720 + 6727 00) ) )
" _ _ 0= —20TY 4 “0700 = 0= (0T0) ' Ty
Taking the Gradient of the loss n n
“Normal Equation™
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The Normal Equation 0= (37®) "' &Y

n d R n
A

9 Hd: @T P d @T Y

1

Note: For inverse to exist @ needs to be full column rank.
- cannot have co-linear features

This can be addressed by adding regularization ...

In practice we will use regression software
(e.g., scikit-learn) to estimate

Geometric Derivation {Bonus-Material)

We ha i to make this

» Examine the column spaces: ¢ materaland

therefore you should know it!

Columns space of &
nd Y
I "

d = q)(l)_’q;.(Z)yn_’q)(d) eRnxd Y = cR™

4 Y

» Linear model = Y is a linear combination of columns @

Columns space of &

in

) . . ; L1
n- | | | nJ m h Y ~ Y = <I>9 * y2 ~ oW, e? .. o) é
M @ @ xd Y ol P v o
— a n = G
® = |2 o, e e R . » Yisin the subspace spanned by the columns of @
] - )
\ Yn J o‘g/& Definition of orthogonal
o ‘ (- 87 (Y.~ ®0O) 0=3T(Y - ®09)
d 1 &
. . . . . & “ | 5 .
» Linear model > Yis a Ilnec;r combination of columns & 09§9/ (] o5 ?:g::egotfwmie/ 0=0Ty — aTopp
Y ot y
A A A 2 T T+, Normal
yav—oi s "<l ] g o etw=ely B3,
| = B, > —
- [ 2 0= (27®)" o’y
in v “Normal Equation”

Lecture ended here

Note you do need to know the final geometric derivation even
though | said in lecture that you do not.




