The Bias Variance Tradeoff and Regularization

Slides by:

Joseph E. Gonzalez jegonzal@cs.berkeley.edu Sprina' 18 updates:

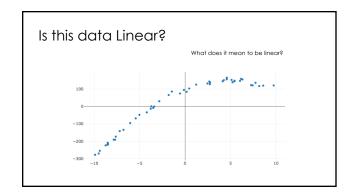
Fernando Perez fernando.perez@berkeley.edu

Quick announcements

- ➤ Please **be respectful** on Piazza
 - > Both of your fellow students and of your teaching staff.
 - > The teaching team monitors Piazza, but you can report any incidents directly to Profs. Gonzalez and/or Perez.
- ➤ Our infrastructure isn't perfect
 - > We're working hard on improving it.
 - > We're building the plane while we fly it, full of passengers.
- ➤ We have a textbook: textbook.ds100.org
 - It's a work in progress!

Linear models for non-linear relationships

Advice for people who are dealing with non-linear relationship issues but would really prefer the simplicity of a linear relationship.



What does it mean to be a linear model?

$$f_{\theta}(\phi(x)) = \phi(x)^T \theta = \sum_{j=1}^k \phi(x)_j \theta_j$$

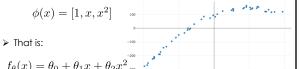
In what sense is the above model linear?

Are linear models linear in the

- 1. the features?
- 2. the parameters?

Introducing Non-linear Feature Functions

> One reasonable feature function might be:



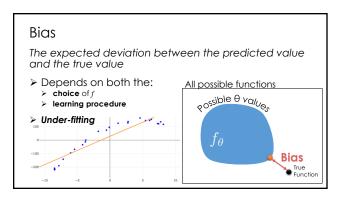
 \succ This is **still a linear model**, in the parameters heta

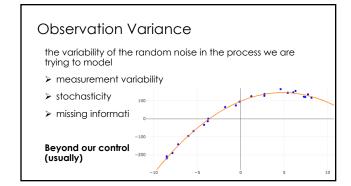
What are the fundamental challenges in learning?

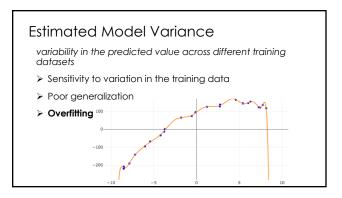
Fundamental Challenges in Learning? Fit the Data Provide an explanation for what we observe Generalize to the World Predict the future Explain the unobserved

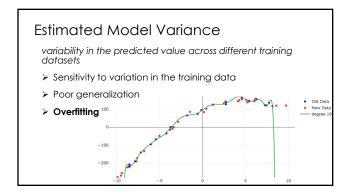
Fundamental Challenges in Learning?

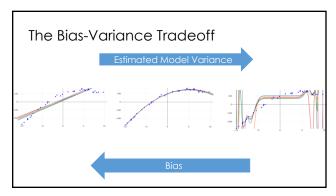
- > Bias: the expected deviation between the predicted value and the true value
- > Variance: two sources
 - Observation Variance: the variability of the random noise in the process we are trying to model.
 - Estimated Model Variance: the variability in the predicted value across different training datasets.





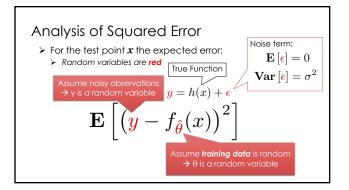






Demo

Analysis of the Bias-Variance Trade-off



Analysis of Squared Error $\frac{\text{Goal:}}{\mathbf{E}\left[\left(y-f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right]} = \\ \text{Obs. Var.} + (\text{Bias})^2 + \text{Mod. Var.} \\ \text{Other terminology:} \\ \text{"Noise"} + (\text{Bias})^2 + \text{Variance}$

$$\mathbf{E}\left[\left(\mathbf{y}-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \mathbf{E}\left[\left(\mathbf{y}-h(x)+h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right]$$
 Subtracting and adding $h(\mathbf{x})$
$$\mathbf{y} = h(x)+\epsilon$$

$$\mathbf{E}\left[\epsilon\right] = 0$$

$$\mathbf{Var}\left[\epsilon\right] = \sigma^{2}$$

$$\begin{split} \mathbf{E}\left[\left(\mathbf{y}-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] &= \mathbf{E}\left[\left(\mathbf{y}-h(x)+h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] \\ &= \mathbf{E}\left[\mathbf{y}-h(x)+h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right] \\ &= \mathbf{E}\left[\left(\mathbf{y}-h(x)\right)^{2}\right] + \mathbf{E}\left[\left(h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] \\ &+2\mathbf{E}\left[\left(\mathbf{y}-h(x)\right)\left(h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)\right] \\ &&= \mathbf{E}\left[\mathbf{y}-h(x)+\epsilon\right] \\$$

$$\begin{split} \mathbf{E} \left[\left(\mathbf{y} - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] &= \mathbf{E} \left[\left(\mathbf{y} - h(x) + h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] \\ \text{Expanding in terms of a and } b : \\ &= \mathbf{E} \left[\left(\mathbf{y} - h(x) \right)^2 \right] + \mathbf{E} \left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] \\ &+ 2 \mathbf{E} \left[\boldsymbol{\epsilon} \left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right] \\ &+ 2 \mathbf{E} \left[\boldsymbol{\epsilon} \left[\boldsymbol{\epsilon} \left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right] \right] \\ &+ 2 \mathbf{E} \left[\boldsymbol{\epsilon} \right] \mathbf{E} \left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right] \end{split}$$
 Useful Eqns:
$$\mathbf{y} = h(x) + \boldsymbol{\epsilon} \\ \mathbf{E} \left[\boldsymbol{\epsilon} \right] = 0 \\ \mathbf{Var} \left[\boldsymbol{\epsilon} \right] = \sigma^2 \end{split}$$

$$\begin{split} \mathbf{E} \left[(\mathbf{y} - f_{\theta}(\mathbf{x}))^2 \right] = & & \mathbf{2} \\ \mathbf{E} \left[(\mathbf{y} - h(x))^2 \right] + & \mathbf{Obs. Variance} \\ \mathbf{E} \left[(\mathbf{y} - h(x))^2 \right] + & \mathbf{Model} \\ \mathbf{E} \left[(h(x) - f_{\hat{\theta}}(x))^2 \right] & \mathbf{Estimation} \\ \mathbf{Error} & & \mathbf{E} \left[\epsilon \right] = 0 \\ \mathbf{Var} \left[\epsilon \right] = \sigma^2 \end{split}$$

$$\begin{split} \mathbf{E}\left[\left(h(x)-f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] &= \text{ Next we will show....} \\ &\left(h(x)-\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^2+ \ \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]-f_{\hat{\boldsymbol{\theta}}}(x)\right)^2\right] \\ &\qquad \qquad \mathbf{Model \ Variance} \\ & \geqslant & \text{Adding and Subtracting what?} \end{split}$$

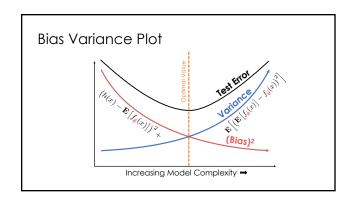
$$\begin{split} \mathbf{E} \left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] &= \\ \mathbf{E} \left[\left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] + \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] \\ \mathbf{E} \text{ Expanding in terms of a and b: } & (a+b)^2 = a^2 + b^2 + 2ab \\ \mathbf{E} \left[\left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] \right)^2 \right] + \mathbf{E} \left[\left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] \\ &+ 2\mathbf{E} \left[\left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] \right) \left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] - f_{\hat{\boldsymbol{\theta}}}(x) \right) \right] \\ &- 2ab \end{split}$$

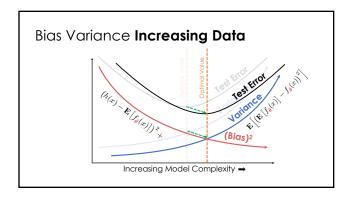
$$\mathbf{E}\left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] = \\ \mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^{2}\right] + \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)^{2}\right] \\ + 2\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right) \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - f_{\hat{\boldsymbol{\theta}}}(x)\right)\right] \\ + 2\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right) \left(\mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right] - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right) \\ 0 \\$$

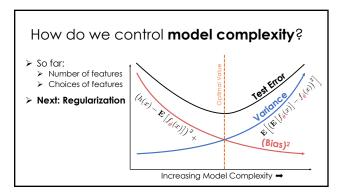
$$\begin{split} \mathbf{E} \left[\left(h(x) - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] &= \\ \mathbf{E} \left[\left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] \right)^2 \right] + & \mathbf{E} \left[\left(\mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] - f_{\hat{\boldsymbol{\theta}}}(x) \right)^2 \right] \\ & \\ \left(h(x) - \mathbf{E} \left[f_{\hat{\boldsymbol{\theta}}}(x) \right] \right)^2 + \end{split}$$

$$\mathbf{E}\left[\left(h(x)-f_{\hat{m{ heta}}}(x)
ight)^{2}
ight]= \ \left(h(x)-\mathbf{E}\left[f_{\hat{m{ heta}}}(x)
ight]
ight)^{2}+\ \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{m{ heta}}}(x)
ight]-f_{\hat{m{ heta}}}(x)
ight)^{2}
ight] \ ext{Model Variance}$$

$$\begin{split} \mathbf{E}\left[(y - f_{\theta}(x))^2 \right] &= \\ \mathbf{E}\left[(y - h(x))^2 \right] + &\quad \mathbf{Obs. Variance} \\ &\quad (h(x) - \mathbf{E}\left[f_{\hat{\theta}}(x) \right])^2 + \quad \mathbf{(Bias)^2} \\ \mathbf{E}\left[\left(\mathbf{E}\left[f_{\hat{\theta}}(x) \right] - f_{\hat{\theta}}(x) \right)^2 \right] \quad \mathbf{Model Variance} \end{split}$$







Bias Variance Derivation Quiz

> Match each of the following:

(1) $\mathbf{E}[y]$

(2) $\mathbf{E}\left[\boldsymbol{\epsilon}^2\right]$

(3) $\mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^2\right]$

(4) $\mathbf{E}\left[\epsilon\left(h(x) - f_{\hat{\theta}}(x)\right)\right]$

http://bit.ly/ds100-sp18-bvt

A. 0

B. Bias²

C. Model Variance

D. Obs. Variance

E. h(x)

F. $h(x) + \epsilon$

Bias Variance Derivation Quiz

http://bit.ly/ds100-sp18-bvt > Match each of the following: A. 0

(1) $\mathbf{E}[y]$

B. Bias² (2) $\mathbf{E}\left[\epsilon^2\right]$

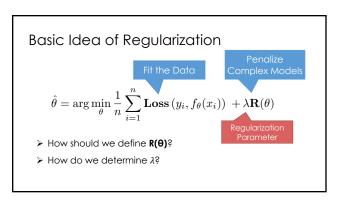
(3) $\mathbf{E}\left[\left(h(x) - \mathbf{E}\left[f_{\hat{\boldsymbol{\theta}}}(x)\right]\right)^2\right]$

C. Model Variance D. Obs. Variance

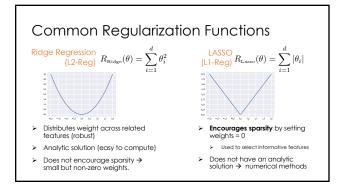
h(x)

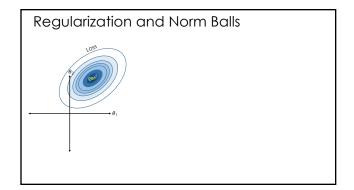
(4) $\mathbf{E}\left[\epsilon\left(h(x) - f_{\hat{\theta}}(x)\right)\right]$

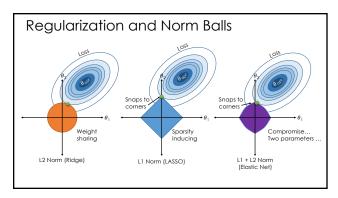
F. $h(x) + \epsilon$



The Regularization Function $\mathbf{R}(\mathbf{\Theta})$ Goal: Penalize model complexity Recall earlier: $\phi(x) = [x, x^2, x^3, \dots, x^p]$ > More features \rightarrow overfitting ... > How can we control overfitting through $\mathbf{\Theta}$ so to remove features \rightarrow other incomplexity. Proposal: set weights = 0 to remove features \rightarrow 0 to remove feat







Determining the Optimal λ

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i)) + \mathbf{\lambda} \mathbf{R}(\theta)$$

Value of λ determines bias-variance tradeoff
 Larger values → more regularization → more bias → less variance

