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Quick announcements

» Please be respectful on Piazza
> Both of your fellow students and of your teaching staff.
» The teaching team monitors Piazza, but you can report any
incidents directly to Profs. Gonzalez and/or Perez.

» Ourinfrastructure isn't perfect
» We're working hard on improving it.
» We're building the plane while we fly it, full of passengers.

» We have a textbook: textbook.ds100.org

> It's a work in progress!

Linear models for

non-linear relationships

Advice for people who are dealing with non-linear relationship issues
but would really prefer the simplicity of a linear relationship.

Is this data Linear?

What does it mean to be linear2
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What does it mean to be a linear model?

k
T
fo(¢(x)) = ¢(x)"0 =" ¢(x);6
j=1
In what sense is the above model linear?
Are linear models linear in the
1. the features?

2. the parameters?

Infroducing Non-linear Feature Functions

» One reasonable feature function might be:

QS(I) = [vaxZ] o

Lo e

» That is:

200 »

Jo(x) = 0 + 012 + Ooz?.. =

s ° s 10

» This is still a linear model, in the parameters 0
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What are the fundamental

challenges in learning?
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Fundamental Challenges in Learning?

» Fit the Data

> Provide an explanation for what we
observe

» Generalize to the World
» Predict the future
» Explain the unobserved

Is this cat grumpy or are we
overfitting fo human faces2

Fundamental Challenges in Learning?

» Bias: the expected deviation between the
predicted value and the true value

» Variance: two sources
» Observation Variance: the variability of the random noise in the
process we are frying to model.

> Estimated Model Variance: the variability in the predicted value
across different training datasets.

Bias
The expected deviation between the predicted value
and the frue value

» Depends on both the: All possible functions

» choice of f
» learning procedure

QOss\b\e ¢} VQ/U@
S

» Under-fitting o e

Bias
» True
Function

Observation Variance

the variability of the random noise in the process we are
frying to model

» measurement variability

» stochasticity

100

» missing informati

-100

Beyond our control o
(usually)

Estimated Model Variance

variability in the predicted value across different training
datasets

» Sensitivity to variation in the fraining data

R
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» Poor generalization
» Overfitting '
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Estimated Model Variance The Bias-Variance Tradeoff

variability in the predicted value across different training : s
datasets Estimated Model Variance

» Sensitivity to variation in the training data
» Poor generalization - /\ w\ st \W }
. "\ /] ‘
S A | I t}‘ ‘

* - e Old Data
> Overfitting *® < B

Analysis of the
Bias-Variance Trade-off

Analysis of Squared Error Analysis of Squared Error

. Noise term:
» For the test point x the expected error:
» Random variables are red E [6 =0

Var [e] = 02

Goal:

B |(y— f;()’] -

Obs. Var. + (Bias)2+ Mod. Var.

Other terminology:

Assume noisy observations
-y is a random variable

|

Assume training data is random

> 6s a random variable “Noise" + (BiaS)2 + Vqriqnce
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E[(y- ;)] = B[(v - ha) + h(z) - 5(2))°]

Subtracting and adding h(x)

Useful Egns:
y=nh(z)+e
El[]=0

Var [¢] = 02

B [(y—1;(@)’] = B [(v— hia) +h(z) = f(@)’]

a b
Expanding in terms of a and b:  (a + b)* = a® + b* + 2ab

- B[ h)] + B[ - 1,0

+2E [(y — h(x)) (h(m) _ fé,(x))] l:e:U h(n;;) =

LGN J | B
Y -

+2E [e (h(m) — fo(x))}

B [(y— ;)] = B[(u - ha) + h(z) - 5(2))°]
Expanding in terms of a and b:
= E[(y—h@)’] + E[(h(@) - ()]
+2]E) [e (h(z) — f3(2))]

Independence of e and 6 Y

J

E [(y - fo(x))*]= 52

A\Y

E [(y — h(x))z] +  Obs. Variance
“Noise” Term

iz
Model

E [(h(x) _ fé(z))g] Estimation

2E E h I N Useful Eans: Useful Egns:
+2BE[e] E [(h(z) — f;(2))] ) h(a) 4« w ... Eror e
0 El = 0 El=0
Var [e] = o2 Var (] = o2
2 . 2
E [(h(ac) — £;(2)) ] = Next we will show.... E [(h(a:) ~ £;(2)) ] =

(@) =B [f@)" + B[(E [f;@)] - f;(2)’]
(Bias)? Model Variance

»How?e
»Adding and Subtracting what?

B (h@) ~ B[f;()] + B [f;@)] - f(x))’]

\

Y Y
a b
Expanding in terms of a and b:  (a + b)* = a® + b* + 2ab
2 2

E [(h(o) - BI;@)])°] + B[(B[f()] - f(@)’]

+2E [(h(z) — E [f;(2)]) (B [f;(@)] = f3(@))]
2ab
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E[(h(x) - f;(=)*] =
B [(h(x) ~ B [f,e)])’] + B[®[f;()] ~ fy(a))’]

2B (@) - B [f,@)]) (B [£;(x)] ~ fy(a)]
e )

E |(h(x) - f;(2)"] =
B[ (k@) - B [f;(2)])’]

+2 (h(x) —E [f(@)]) B [(B [f;(2)] = f3()]

+2 (h(2) — B [f;()]) (? [fo(@)] = E[f3@)])

+ E[® )] - f)]
)
LConstant_J

J

!
0

E[(h(x) - f;=)*] =
E [(h(x) -E [fé(:r)])z] + E {(E [f3()] — f@(w))z]

\ Constant ]

(h(z) = E [fy(@)])" +

E|[(h() - f;@)"] =

(h(@) ~ B [f;@)])° + E[(E[f@)] - f2)]

(Bias)?

Model Variance

E |- f@)] =

0_2

E[(y - h@)?] ¥ Obs. Variance
“Noise”

(h(z) - E[f;(x)])*+ (Bias)?

E|[(E [f;(@)] - /;(z))’] Model Variance

Bias Variance Plot

Increasing Model Complexity =
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Bias Variance Increasing Data How do we control model complexity?

> So far:
» Number of features
» Choices of features

> Next: Regularization

Increasing Model Complexity =

Increasing Model Complexity =

Bias Variance Derivation Quiz Bias Variance Derivation Quiz

» Match each of the following: Bife Aol fdls 19032 18:1ef » Match each of the following: e e
A. 0 A. 0

1) E 1) E

) ] B. Bias2 ) ] B. Bias?

(2 E [62] C. Model Variance (2 E [62] C. Model Variance

B) g [(h(x) _E [f@(x)})Q] D. Obs. Variance B) B [(h(x) —E[f;(2)] D. Obs. Variance
E. h(x) E. h(x)

(4) E[e (h(z) - f3(2))] F.oh(x) +e (4] E e (h(z) = f3())] . oh(x)+c

(] (]
Reg vlarization Basic Idea of Regularization
Parametrically Controlling the Ssrnes Penalize
Model Complexity Complex Models

. 1l
0 = arg min ; Loss (y;, fo(zi)) +AR(0)

Regularization
) P "
> How should we define R(8)? (CIfEITEIET

» How do we determine 12

» Tradeoff:
> Increase bias
> Decrease variance



http://bit.ly/ds100-sp18-bvt
http://bit.ly/ds100-sp18-bvt
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The Regularization Function R(©)
Goal: Penalize model complexity
Recallearier:  ¢(z) = [z,2%,2%,..., 2]

» More features >
overfitting ...

100

» How can we control

overfitting through © =

» Proposal:

* TreinData
—— degree 1

set weights =0
to remove features s

Common Regularization Functions

. . d d
Ridge Regression o LASSO
(L2Reg) Brue(f) = 291 (L1-Reg) Fuasro(8) = 3 164

. i=1

> Distributes weight across related > Encourages sparsity by setting
features (robust) weights =0

Analytic solution (easy to compute) > Used o select informative features

> Does not encourage sparsity > > Does not have an analytic
small but non-zero weights.

solution > numerical methods

Regularization and Norm Balls

\o%

Regularization and Norm Balls

\0%

Snaps to 4

Weight

Sparsity
sharing

inducing

Compromise...

L2 Norm (Ridge) L1 Norm (LASSO) L1 + L2 Norm
(Elastic Net)

Two parameters ...

Python Demo!

The shapes of the norm balls.

Maybe show reg. effects on actual models.

Determining the Optimal 4

. 1<
0 = arg min — Zl Loss (y;, fo(x:)) +AR(0)

1=

» Value of 1 determines bias-variance fradeoff
» Larger values - more regularization - more bias - less variance




Summary

E[w-n@)] =

Error

B0 )] +
(h(x) = B [f;()])" +

B[(E[f@)] - f1()’]

Regularization n

R 1
0= argmin ; Loss (yi, fo(w:))
+AR(0)
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