Data Science 100
Probability and Generalization

Slides by:
Joseph E. Gonzalez & Deb Nolan,

[egonzal@bperkeley.edu

deborah nolan@berkeley.edu



mailto:jegonzal@cs.berkeley.edu
mailto:jegonzal@cs.berkeley.edu

How was the Midterm®@



Grade Distribution

0.04

0.03

0.02

0.01

0.00

30

40

50

60

70
Percentage

80

90

— \ean
- == NMedian

100

110



score
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Recap: Modeling and Estimation

1. Define the Model: simplified representation of the world

2. Define the Loss Function: measures how well a particular instance
of the model “fits” the data

3. Minimize the Loss Function: find the parameter values that

minimize the loss on the data

What does a model that fits the data have to do with the world?



Generalization

The focus of the next few lectures.



Generalization

Sample Population
The data / - The group
that we / that we want
have to study

N —

Data Generation
Process
How the sample is
collected from the
population.




What we will do:

1. Examine a Population

2. Study a data generation process
a. Simulation for insight
b. Theory for proof

3. Draw conclusions from a sample

a. Theory to connect to population
0. Bootstrap to go beyond theory




Review
Probabllity Concepts



» Population Size

Toy scenario =7

» Total value of the population

Population of coins in my pocket.

2XxX204+1x10+41x0+4+3 x1
— 68

e > Average coin value:
& Quarter 68

— =~ 9.71
7

> Median coin value:




Random Sample of Size 1

» Randomly sample a single coin

» Let X be the value (in cents)
> Takes on values: 1,5, 10, and 25
> X Is arandom variable

> Random variable: a variable
whose value is defermined by @
chance event.

» Chance event
> The kind of coinl draw: P, N, D, Q

Population of coins in my pocket.
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Population of coins in my pocket.

» Randomly sample a single coin

> Let X be the value (in cents)
» Takes on values: 1,5, 10, and 25
> X Is arandom variable

> Random variable: a variable
whose value is defermined by @
chance event.

» Chance event
> The kind of coinldraw: P, N, D, Q

7 - -;\<‘\

'“Fenny

Probability Distribution

m - What is the expected value of X¢
3/7 1/7 7

1/7




Population of coins in my pocket.

The Expected Value P3¢
1 x 10¢
= Z P (x
rEX 1 x 5¢
» Computing expectations: 3% 1¢
3 1 1 9 68 Probabilit DISTI’IbUTIOﬂ
1= 4+5- +10= +25- = — ~90.71 ‘Penny m

7 7 7 7 7 3/7 1/7 1/ 2/7

» So the expected value is 9.71...
» Have you ever seen a 92.71 coine
> Is this a problem?e




Sampling Twice (Sample size 2)

» Suppose | sample two coins with replacement
> With replacement: put the coin back in pocket after sampling
> Let X; and X, be the first and second coin values.

> A friend gives me 4 more X, and 2 more X, and a quarter
> | define a new random variable:

Y =0X1 +3Xo + 25

> Whatis the value of Y¢
> Random

» What is the expected value of Ye



Calculating the Expected Value
Y J— 5X1 _I_ 3X2 _|_ 25 Population ofcj?iin my ?ITT.

Penny

Joint Probability Distribution mi" le Gmm le P"mw- DB%

P(X1:$17X2:$2) 3/7 1/7 1/7  2/7
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Calculating the Expected Value
Y J— 5X1 _I_ 3X2 _|_ 25 Population ofchiTsﬁinmv olf
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25¢
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Calculating the Expected Value
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Calculating the Expected Value
Y J— 5X1 _I_ 3X2 _|_ 25 Population ofcj?iin mvcilf’r.

X9
I N
¢

(3/7)(3/7)  (3/7)(1/7)

5 1/7)(3/7 1/7)(1/7
X1( )(3/7)  (1/7)(1/7)

10¢

25¢

Penny

Joint Probability Distribution mi" le Gmm le P"mw- DB%

P(X1:$17X2:$2) 3/7 1/7 1/7  2/7




Calculating the Expected Value
Y =5X1 +3Xs + 25

X9
I N

LA (3/7)(3/7)

5
X

(LA (1/7)(3/7)

(2/7)(3/7)

(1/7)(3/7)

(3/7)(1/7)
(1/7)(1/7)
(1/7)(1/7)
(2/7)(1/7)

(3/7)(1/7)
(1/7)(1/7)
(1/7)(1/7)
(2/7)(1/7)

(3/7)(2/7)
(1/7)(2/7)
(1/7)(2/7)

(2/7)(2/7)

Joint Probability Distribution
P(Xl — iCl,XQ — ZBQ)

Population of coins in my pocket.

iinEIe iamgle Prob. Distribution

3/7 1/7 /7  2/7




Calculating the Expected Value
Y J— 5X1 _I_ 3X2 _|_ 25 Population ofchiTiinmv olf

2 x 25¢
Sums to 1.

I x 10¢
- 9/49 3/49 3/49 6/49

5 3/49 1/49 1/49 2/49 1 x5
Xy ¢

LI 3/49 1/49 1/49 2/49

\U
lp—l ‘;\‘" 57
& ii Nickel

3x1¢

6/49 2/49 2/49 4/49 .Pemv
Joint Probability Distribution mi" le Gmm le P"mw- DB%

P(X1:$17X2:$2) 3/7 1/7 1/7  2/7




Calculating the Expected Value

Y = 65X + 3Xs + 25 TR

X1 9/49 3/49 3/49 649

ElY|= ;4 ;4 P(x1,22) (bx1 + 322 + 25) P 349 1749 1749 2/49
T, To YO 3/49 1749 1/49  2/49

LT 6/49  2/49 2/49 4/49

Joint Probability Distribution
P(Xl — CEl,XQ — 5172)




Calculating the Expected Value

Y = 65X + 3Xs + 25 TR

X, v 349 314 449
E[Y] — S: S: P(ml, :L‘Q) (5x1 + 319 + 25) « [TmTm e

r1 X2 AN 3/49  1/49 1/49  2/49

— P(l) 1) (5 Xx14+3x1+ 25) + ITIN 6/49  2/49  2/49  4/49
Joint Probability Distribution

P(Xl — CEl,XQ — 372)




Calculating the Expected Value

Y = 65X + 3Xs + 25 TR

X, v 349 314 449
E[Y] — S: S: P(ml, :L‘Q) (5x1 + 319 + 25) « [TmTm e

r1 X2 AN 3/49  1/49 1/49  2/49

_ P(17 1) (5 x 1 4+3x1+ 25) 1 ITIN 6/49  2/49  2/49  4/49

Joint Probability Distribution
P(1,5)(5x1+3x5+25)+ P(X: = 21, Xo o)




Calculating the Expected Value

Y = 65X + 3Xs + 25 TR

X, v 349 314 449
E[Y] — S: S: P(ml, :L‘Q) (5x1 + 319 + 25) « [TmTm e

T1  To VB 3/49 1749 1749 2/49
(:_, 1) (5 X 1+3 X1+ 25) . TR 6/49 2/49 2/49  4/49

P

| Joint Probability Distributi
P(1,5) (b x 143 x5+25)+ OP;‘(erzoxl,yX: rzuxj)n
P(1,10) (5 x 14 3 x 10 + 25) +




Calculating the Expected Value

Y = 65X + 3Xs + 25 TR

X, v 349 314 449
E[Y] — S: S: P(J317 :L‘Q) (5x1 + 319 + 25) « [TmTm e

1 X9 ([N 3/49  1/49 1/49  2/49
x11+3x 1+ 25) u BN 6/49  2/49  2/49  4/49
Joint Probability Distribution

(1,1) (5
P(1,5)(5x1+3x5+25)+ P (X, = 1. Xo = )
P(1,10) (5 x 143 x 10+ 25) +
P(1,25) (5 x 143 x25+25)+
P(5,1)(5x 5+ 3 x 1 + 25)




Calculating the Expected Value

Y =541 43Xz +25 ERCECETIE
- Xl- 9/49 3/49 3/49  6/49
> > (x1,22) (bx1 + 32 + 25) T 3/45 1749 1749 2/49

AN 3/49  1/49 1/49  2/49

— 9/49 (33) + 1. , TR 649 2/49 2/49 4749
3/49 (45) + 1his 5 exhausing Joint Probability Distribution
P(X) =z, X5 = x2)

3/49 (60) +

6/49 (105) +
3/49  (53) +

There is a better way!



Linearity of Expectation

Lowercase Letters
are Constants

(not Random)

ElaX+Y +b|=adE[X]|+E[Y]+0b

» What is the expected value of Y¢

E[Y] = E[5X; + 3X, + 25]

— E 5X1] + E [3X2] + E [25] Linearity of expectation

=E[5X:] +E[3Xs

= 5E[X;] + 3E [X»

Expectation of constant
+ 25 is the constant.

1 25 Linearity of expectation



Lowercase Letters

Linearity of Expectation (not Rondom)

ElaX+Y +b|=adE[X]|+E[Y]+0b

» What is the expected value of Y¢

E[Y] = HE [Xl] + 3E [XQ] + 25 ~ 102.71
\ ) \ )
| |
68 68
7 7

> What if X; and X, were sampled without replacement?
> Can X; =X,=5¢ - -
» Can | sample two dimes




Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

X9
R
5
X,

10¢

25¢

Joint Probability Distribution

P(Xi=21.Xo=271 mﬁrob. Distribution
(X1 =21, X5 = 25) i | Quarr

3/7 1/7 /7  2/7




Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

Xo
e e R
VA (3/7)(2/6)
I x 10¢ .
5
X,
10¢ I x 5¢
“f‘ Nlckel
25¢
3x1¢
Joint Probability Distribution Penny

P(Xi=21.Xo=271 mﬁrob. Distribution
(X1 =21, X5 = 25) i | Quarr

3/7 1/7 /7  2/7



Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

Xo
o e e R
(VA (3/7)(2/6)  (3/7)(1/¢6)
I x 10¢ .
5
X,
10¢ I x 5¢
“f‘ Nlckel
25¢
3x1¢
Joint Probability Distribution Penny

P(Xi=21.Xo=271 mﬁrob. Distribution
(X1 =21, X5 = 25) i | Quarr

3/7 1/7 /7  2/7



Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

yLY
5 1/7)(3/6
)(1 AN (1/7)(3/6)
10¢
25¢
Joint Probability Distribution Penny

P(Xi=21.Xo=271 mﬁrob. Distribution
(X1 =21, X5 = 25) i | Quarr

3/7 1/7 /7  2/7



Dependent Random Variables

Sampling with without replacement

X9
B N

(LA (3/7)(2/6)  (3/7)(1/6)

5
X

10¢

(1/7)(3/6) (1/7)0

25¢

Joint Probability Distribution
P(Xl — xl,XQ m— 332)

Population of coins in my pocket.

Penny

iinEIe iamsle Prob. Distribution

3/7 1/7 /7  2/7



Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

---- 2
(3/7)(2/6)  (3/7)(1/6) (3/7)(1/6) (3/7)(2/6)
I x 10¢ ,
TR (1/7)(3/6) (1/7)0 (1/7)(1/6) (1/7)(2/6) Dime
X1
0T (1/7)(3/6)  (1/7)(1/6)  (1/7)0  (1/7)(2/6) I x5¢ (Lat
& ‘:I“ " Nickel
(2/7)(3/6)  (2/7)(1/6) (2/7)(1/6) (2/7)(1/6)
3x1¢
Joint Probability Distribution Penny

P(Xi=21.Xo=271 mﬁrob. Distribution
(X1 =21, X5 = 25) i | Quarr

3/7 1/7 /7  2/7



Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

Sums to 1.

---
- 6/42 3/42 3/42 6/42

T 3/42 0 1/42 2/42
x, K
/] 3/42 1/42 0 2/42

6/42 2/42 2/42 /42

Joint Probability Distribution Penny

P(Xi=21.Xo=271 mﬁrob. Distribution
(X1 =21, X5 = 25) i | Quarr

3/7 1/7 /7  2/7




Dependent Random Variables

Sampling without replacement - X2
1¢ 5¢ 10¢ 25¢
Y =05X 1T 3X > + 25 642 3/42 342 6/42

3/42 0 1/42 2/42
10¢ 3/42 1/42 0 2/42
I 6/42  2/42  2/42  2/42
= (6/42) 33 + (3/42) 45 + (3/42) 60 + (6/42) 1056 + Joint Probability Distribution
(3/42) 53 + (0) 65 + (1/42) 80 + (2/42) 1256 + P(X, =21, X3 = x5)
 (3/42) 78 + (1/42) 20 + (O) 1056 + (2/42) 150 +

(6/42) 153 + (2/42) 165 + (2/42) 180 + (2/42) 225

719

— —— =~ 102.71 We have seen this beforel!

E[Y] — 5E [Xl] —|- 3E [XQ] —|— 25 ~ 102.71

> >1 $1,232 5$1+3$2+25) X1




Expected Value and

summary Linearity of Expectation

» Expected Value

E | X| = Z rP(x)

reX
» Linearity of Expectation

ElaX+Y +b=adE[X]|+E[Y]+0b

» independence not required
» Proofe



Proving Linearity of Expectation

ElaX 4+ DY +¢] = Z ZP(aj,y)(a:E+by+c)
reEX yey

= > D Plyaz+ ) > Playby+ ) » P

reX yey reX yey reX yey

:>:>: mya$+> >1 (x,y)by + ¢

reX ye)y reX yey




E[aX+bY+c]:>:>: xya:zz+> >1 (x,y)by + ¢
recX yey reX ycy

Conditional Defn. P(x,y) = P(x |y)P(y) = P(y | 2)P(x)

Using the above identity:

>:>: :I:yax—> >1 (y | 2)P(x)ax

reX yey reX yey
Factoring out the
terms that do not — @ Z P(:IZ)QC Z P(y ‘ ZC) — Qa Z P(ZIZ‘)CIZ
depend ony

reX yey reX

Sums fo |

— aE|z]



Proving Linearity of Expectation

ElaX +bY + c| = aE|7] +> >1 (x,y)by + c
reEX yey

The remainder of the proof is left as an exercise.




Expected Value and
Linearity of Expectation

Summary

» Expected Value

E[X]=) aP(z)

reEX
» Linearity of Expectation

ElaX+Y +b=adE[X]|+E[Y]+0

» independence not required

> What about E[XY] = E[X|E[Y]



Expected Value and

summary Linearity of Expectation

» Expected Value

E[X]=) aP(z)

reEX
» Linearity of Expectation

ElaX+Y +b=adE[X]|+E[Y]+0

» independence not required

> If X and Y are independent then E[XY| = E|X|E|Y]



Characterizing Random Variables

> Probability Mass Function (PMF): Discrete Distfribution
» The probability a variable will take on a particular value

> Probability Density Function (PDF): Continuous Distributions
» Not covered ... here there be dragons

> Expecitation
» The average value the variable takes (the mean)

» Variance
» The spread of the variable about the mean



The Variance

Var [X] = E [(X _E [X])ﬂ - Y (¢ —E[X])’ P()
» Useful Identity: ;

Var [X] = E [(X _E [X])ﬂ

Expanding the square — E |:X2 — 2XE [X] _|_ E [X]Q}



» Useful Identity:

Var [X]| =E [(X — B [X])z}

Expanding the square — E |:X2 — 2XE [X] _l_ E [X]2i|

constant

Linearity of expectation — E [XQ] — E [QX{E [Xk]w] E |:E [X]2j|
—

constant

Linearity of expectation — E [XQ} — 2E [X] E [X] —|— E [X]Q

Algebra — E [XZ} — E [X]2



The Variance

Var [X] = E :(X _E [X])Q} - Y (¢ - E[X])*P(x)

- E[X? -E[X])°
» Properties of Variance:
Var [aX + b] = a*Var [X] + 0
> If X and Y are independent:
Var | X + Y| = Var |X| + Var Y]



= E[X? - E[X])°
» Properties of Variance:
Var [aX + b] = a*Var [X] + 0
> If Xand Y are independent:
Var | X +Y| = Var | X| + Var |Y]
» Standard Deviation (easier to interpret units)

SD [X] = /Var [X]

» Useful identity

SD [aX + b] = |a| SD [ X



Covariance

» The covariance describes how to variables vary jointly
Cov| X, Y|=E|(X —EX)(Y —E|Y])]
= E|XY]| - EX|E|Y]
» Basic properties of the covariance
Cov|aX + u,bY 4+ v] = abCov|X, Y]

> If X and Y are independent then: E[XY| = E[X]E|[Y]
Cov(X,Y] =0



Covariance

Cov[X,Y]=E|[(X - E|X])(Y - E[Y])]
— E[XY] - E[X]E[Y]

Correlation

> The units of covariance can be difficult to reason about
> Correlation is the “normalized” covariance
Cov|X,Y] Cov|X,Y]

pxy = CorrlX, Y] = /Var[X],/Var[y] ~ SD[X]SD[Y]

> A number between -1 and 1

pxy = —1 e @ pxy xR0 c——ooxy =1

3

0

-3

3

0

-3

*

*

H
*

* %

Kk
*
**
*

* *

*

-3

0

3

3

0

-3




Practice Distributions



Binary Random Variable (Bernoulli)

» Takes on two values (e.g., (0,1), (heads, tails)...)

X ~ Bernoulli(p)
> Characterized by probability p --.

Chance

» Expected Value:
ElX] =
» Variance

Var|X| =



Bernoulli PMF
Value 1 0 hitp://bit.ly/ds100-sp18-var

Chance p I-p

Var[X] =E [(X — E[X])?| = E[X?] - E[X]’

E[X]| = Z P (x)
reX
What is the value of the following in terms of p

E[X] =

Var|X| =



Binary Random Variable (Bernoulli)

» Takes on two values (e.g., (0,1), (heads, tails)...)

X ~ Bernoulli(p)
» Characterized by probability p

Chance P 1-p
» Expected Value:

EX|=1xp+0x(1—p)=p

> Variance

Var [X]=(1-p)°>*p+ (0—p)*(1 —p) =p(1 — p)



Another Example

> | like to eat shishito peppers

» Usually they are not too spicy ...
» but occasionally you get unlucky (or lucky)

» Suppose we sample n peppers at random from
the population of all shishito peppers

» can we do this in practicee
» Difficultl Maybe cluster sample farms?e

» What can our sample fell us about the
populatione




Formalizing the Shishito Peppers

» Population: all shishito peppers
» Generation Process: simple random sample
» Sample: we have a sample of n shishito peppers

> Random Variables: we define a set of n random variables

X1, Xo,... X, ~ Bernoulli(p™)

> Where X, = 1 if the i pepper is spicy

and 0 otherwise Population Parameter

(We don’t know it.)

Remember star is for the universe.




> Random Variables: we define a set of n random variables

X1,Xs,...X,, ~ Bernoulli(p™)

> Where X, = 1 if the ih pepper is spicy
and O otherwise.

» Sample Mean: |s a random variable

_ 1
E=12 %

> Expected Value of the sample mean:

Population Parameter

(We don’t know it.)

Remember star is for the universe.




_ 1
X = — ZXZ X1,Xs,...X,, ~ Bernoulli(p™)
ni 1

> Expected Value of the sample mean:

~ _ Linearity of
1 n n expec’ro’rlon
EX]=E|-) X, =—§E
n -
| =1 _
n
1 Let u be the
= — U = [l expected value
T “ for all X,

The expected value of

— p* For the shishito peppers the sample mean is
setting we have u = p*

the population mean!




_ 1
X = — E X1,Xs,...X,, ~ Bernoulli(p™)
n —_—

> Expected Value of the sample mean:

1 n
:E;“:“

» The sample mean is an unbiased estimator of the
population mean

Bias = E [ X| — =0



Sample Mean i1s a Random Variable

_ 1
X=- Z X;
1=1
» Expected Value:

i 1N
EX]=E |-} Xij|=—> p=p
i=1 '

> Variance:

Var [)_(} — Var %ZXZ
i=1




> Variance:

Variance

Var [X} — Var l ZXZ — iV&I‘ ZXZ Property of the
L 1=1 _

1 n
If the X, are E :
independent! TL2 Var [XZ]
1=1

> In the shishito peppers example are the X, independent?
» Depends on the sampling strategy

?
» Random with replacement (after tasting)—=> Yes! /EWW ’

» Random without replacement - Nol
» Correction factor is small for large populations



> Variance:

Var [)_(] =

If the X, are _—
independent!

Define the
variance of X;
as 02

For shishto
peppers with  —
replacement

1 mn
V _ .
ar nZXZ
L =1 _
1 mn
— ) Var[X]]
1=1
LS
n? i—1 n
p*(1—p*)

1
— —Var E XZ Property of the

Variance

The variance of the
sample mean decreases at a

rate of one over the sample size




Summary of Sample Mean Staftistics

_ 1
X:E;X@'

» Expected Value:

mﬂ:E%Zm =
L 1=1 -

> Variance:

Var [)_(] — Var %ZX’L
=1

1 n
E;M:M

2
o Assuming X; are
independent

n



_ 1
X==-) X,
n
1=1
» Expected Value:
1<~ | 1<
E[X|=E|-) X;| == =
X - X nZu "
’L:l Z:].
> Variance:
_ _1 e _ T2 iy
Var [X } — Var - ZXi = ndopendent
=1

» Standard Error:

o
\/ﬁ Square root law



—= has a probability
X Mass function

ALSO KNOW AS A
SAMPLING DISTRIBUTION



The Distribution of an Estimator

» Resampling the population to estimate the sample distribution.

Variability in my
estimation
, procedure.

i .w.x-rp;-: i l.‘@y;. TTT
i ® i e e
I fels T : 4 s S _

S

%A * e s 5 %0 ot o
» X > | Confidence
sample 3 Interval

/.6 Billion People



1.6

Ceniral Limit Theorem

» Describes the limiting shape of the
distribution of the sample average

» The sample average behaves
approximately like a random draw /\
from the normal distribution

» Assumes independent and identically
distributed observations A

0.2

0.0
80 85 90 95




Law of Large Numbers

94

92

Average Inspection Score
oo ©
oo o

(o]
»

Describes the relationship between sample
mean and the population mean.

As the sample size grows the sample mean
approaches the population mean.



Booftstrap the Distribution of an Estimator

» Simulation method to estimate the sample distribution.

Pretend this is your population!

**** Booftstrap Samples
s o, MM
Q,

,@b/;bb/@h,
Ca,. Y%
/.6 Billion People ****




Booftstrap the Distribution of an Estimator

» Simulation method to estimate the sample distribution.

Pretend this is your population!

**** Bootstrap Samples B Variability in my
SO“\Q\Q \ *ii* » Xsample 1 estimation

procedure.
‘s (/%7,0/@ ’
OCQ,);‘V/% _
K& ¥ X X LESEEEY

**** » X | Confidence
sample 3 Interval




Boot Strap Confidence Interval

» Construct a 95% confidence
interval by taking the 2.5% and
(100 - 2.5)% quantiles

> We will return to this in a few
weeks...

95%

2.5]/( | — 2-5%

87 88‘ 89 90 91 ‘92 93



Connection to Loss
Minimization



The Sample Loss

» Recall earlier that we used the average loss

Parametric
Model

Loss on a single
Example

(e.g., L2, L1, Huber)

Lavg(0)

Average |loss
for my data

Predict Y; (e.g., tip)from X
(e.g., table size)

Model Parameters



The Sample Loss

» Recall earlier that we used the average loss
avg Z E )/27 f@ )

» Nofice that this is really a sample loss
> It is arandom variable (depends on X, and Y))

» How does it relate to the population?

» We will answer this question precisely for the squared loss in the
next lecture using bias and variance

» Today we will related the expected loss to the sample loss



Average Sample Loss

Risk and the Expected Loss | =2 i)

» We can define the expected loss as:

R(0) = E [£(Y, fo(X))]

> This is called the risk

> Itis the risk associated with the choice of 6
> Not a random variable

» Given access to the joint probability of X and Y we can
rewrite the risk as:

R(O) = Ly, fo(x))P(z,y)

reX yey




» Given access to the joint probability of X and Y we can
rewrite the risk as:

RO) =YY Uy, folx))P(z,y)

r€X yey

» A natural objective would be to minimize the risk

) = arg m@in S: S: Uy, fo(x))P(x,y)

reX ye)y

» Unfortunately, we don’t have the joint prob. P(x,y)

> We can approximate P(x,y) with our samples.



» Given access to the joint probability of X and Y we can
rewrite the risk as:

RO) =YY Uy, folx))P(z,y)

r€X yey

» The empirical risk approximates the frue risk
. - 1
R(6) ~ R(0) = Y (Y, fa(X0)) -

i=1

» Where the Xi and Y; are drawn from the joint probability
(a0 random sample)



» Given access to the joint probability of X and Y we can
rewrite the risk as:

= > Uy, fo(x)P(z,y)

reX ye)y

» The empirical risk approximates the frue risk

RO) ~ R(0) = > (Vi fo(X

Z));;
1=
> This is just the average loss from before: -

avg Z€ Yjwf@



Summary

» Today we reviewed
> Joint Probability Distributions
> Expectation
» Variance
» Covariance

» Studied Properties of the Sample Mean

> Unbiased
> Law of large numbers: convergence to the population mean
» Central Limit Theorem: Distribution

» Connected the Average Loss to the Empirical Risk



