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Data Science 100
Probability and Generalization

Joseph E. Gonzalez & Deb Nolan,
jegonzal@berkeley.edu
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Recap: Modeling and Estimation Generalization

1. Define the Model: simplified representation of the world

2. Define the Loss Function: measures how well a particular instance
of the model “fits” the data

3. Minimize the Loss Function: find the parameter values that

minimize the loss on the data

—)

(¢

What does a model that fifs the data have to do with the world?

The focus of the next few lectures.
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Sample i Ceneralization Population
Thedata = - The group
thatwe I . that we want
have l — fo study

Data Generation
Process
How the sample is
collected from the
population.

What we will do:

1. Examine a Population

2. Study a data generation process
a. Simulation for insight
b. Theory for proof

3. Draw conclusions from a sample
a. Theory to connect to population
b. Bootstrap to go beyond theory

Review
Probability Concepts

» Population Size

Toy scenario =7
» Total value of the population

Population of coins in my pocket.

2x256+1x10+1x5+3x1
=68
» Average coin value:

68
— ~9.71
7 9.7

» Median coin value:

eee C;) ® DO

\ Nickel
- @@

enny

Random Sample of Size 1

Population of coins in my pocket.

» Randomly sample a single coin

> Let X be the value (in cents) 2 x 25¢
> Takesonvalues: 1,5, 10, and 25
> Xis arandom variable

X . 1 x 10¢

» Random variable: a variable
whose value is determined by a
chance event. 1x5¢

» Chance event
» The kind of coinldraw: P, N, D, Q

Population of coins in my pocket.

» Randomly sample a single coin

> Let X be the value (in cents) 2 x 25¢
» Takesonvalues: 1,5, 10, and 25

» Xis arandom variable
1 x 10¢

! X5¢ Nickel
- @O@

Penn

» Random variable: a variable
whose value is determined by a
chance event.

» Chance event
» The kind of coin I draw: P, N, D, Q

Probability Distribution

p;m%?niém What is the expected value of X2
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Population of coins in my pocket.

The Expected Value 2x2e (gt
1x10¢ ()

EX]= S «P(x) -
17€ZX 1x5¢ @Nicke\
w: @@@

» Computing expectations:
Penn

1 1 2 Probability Distribution
ST L S L UUPYCRN ) | Nicke! Dime | Quarte |

7 7 7 T 37 7 727

» So the expected value is 9.71...
» Have you ever seen a 9.71 coin?
> Is this a problem?2

Sampling Twice (Sample size 2)

> Suppose | sample two coins with replacement
> With replacement: put the coin back in pocket after sampling
» LetX; and X, be the first and second coin values.

» A friend gives me 4 more X; and 2 more X, and a quarter
» | define a new random variable:
Y =5X; +3X2+25

» What is the value of Y2
» Random

> What is the expected value of Y2

Calculating the Expected Value
Y =5X; +3X,+25

Population of coins in my pocket.

2
Quarter

Xo
EOmC ... .

Xl 1 3¢ @Nlcke\
- Q@@
25¢

enny

Slnﬁle Samsle Prob. Distribution

P(X, =z, Xy = x9) 37 7 7 27

Joint Probability Distribution

Calculating the Expected Value

Population of coins in my pocket.

Y =5X; +3X + 25

ucnev

Xo
_m 25¢ 1 x 10¢ @ Dime

(3/7)(3/7)
5¢ 1x5 )
x, ¢ ©..
e
v Q@@
25¢

Penn

Joint Probability Distribution

SInEIe Samsle Prob. Distribution

P(X) =21, X = 12) 37 o 727

Calculating the Expected Value
Y =5X1+3X2+25

Population of coins in my pocket.

2x25¢ |

Xo x s
le 5c m“
©B/7)3/7) (3/7)(177) 1 10¢ @ pime
x il e @),

i
- @OQ
25¢

Penn

SinEIe Samsle Prob. Distribution

P(X; =21, Xo = 13) 37 7 7 27

Joint Probability Distribution

Calculating the Expected Value
Y =5X; +3X2+25

Population of coins in my pocket.

Quarter

X
[ [ e e
1% 10¢ @
(3/7)(3/7) @m7017) 2 pime
Nickel

X, 0/7)17)
10¢
i - @O@
25¢

Penn

Joint Probability Distribution i ob Distribution
Dime | Quarter

P(X; =21, Xo = 13) a7 T T A7
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Calculating the Expected Value
Y =5X; +3X5+25

Population of coins in my pocket.

ot uuner

Xo 3
N N N xi0e @
(B3/7)3/7)  (3/7)(1/7) %%/ pime

El (1/7)(3/7)  (1/7)(1/7) Ix5¢ (e
X, R Nickel
- Q@@
25¢

Penn

SinEIe SamEIe Prob. Distribution

P(X) =21, X2 =19) 7 7 7 27

Joint Probability Distribution

Calculating the Expected Value
Y = 5X]_ —+ 3X2 —+ 25 Population of coins in my pocket

Quarter
1 x 10¢ @ Dime

X WmEEy e mam (e 1x5¢ (e
1 " Nickel
LTl (1/7)(3/7)  (1/7)(1/7)  (1/7)(1/7)  (1/7)(2/7)

. Q@@
(2/7)(3/7) @m0 @07 (@7es7)

Penn

Joint Probability Distribution ob. Distribution
Dime | Quarter

P(X; =21, Xy = 23) A A A

ra/mam ©)1/7) B0/ B7)17)

Calculating the Expected Value
Y =5X; +3X,+25

2x25¢
Sums fo 1. ‘Quarter

Xo
O |, o

Population of coins in my pocket.

1¢ 9/49 3/49 3/49 6/49
5¢ R 1/49 1/49 2/49 1x5¢ ()
X] R Nickel
10¢ 2 1/49 1/49 2/49
- Q@@

25¢ I 2/49 2/49 4/49 onny
Joint Probability Distribution Slnﬁle Samsle Prob. Distribution
P(X) =1, X2 = x2) 7 7 7 27

Calculating the Expected Value

Xo
Y =5X1 43X 425 [ Toe oo T
X1 9149 3149 3/49 6/49
3/49 1/49 1/49  2/49

E[Y]=) Y P(a1,22) (521 + 3z2 + 25)

r1 T2 QLTI 3/49 1749 1749 2/49

5¢

PITON 6/49 2/49 2/49 4749
Joint Probability Distribution
P(Xy =1, X5 = 1)

Calculating the Expected Value

Y =5X1 43X, +25 BRI
9/49 3/49 3/49 6/49

X,
E[Y]= Z Z P(z1,x2) (51 + 322 + 25) 349 1/49 1749 2/49

1 xo (LTl 3/49 1749 1749 2/49

= ]_:)(17 1) (5 x14+3x1+ 25)+ DI 6/49  2/49 2/49  4/49
Joint Probability Distribution

P(X) =21, Xy = a3)

Calculating the Expected Value
Y =5X; +3X, + 25 EECAEE

X19/49 3/49  3/49  6/49

ElY]|= Z Z P(z1,x2) (51 + 322 + 25) Bl o o 1w we

Ty T2 AT 3/49  1/49 1/49  2/49
= P(1,1)(5x14+3x1+25)+ PETl ¢/e9 2149 2/49 4/49

Joint Probability Distribution
P(1,5)(5x14+3x5+4+25)+ P(X1 = 21, Xa — 72)
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Calculating the Expected Value
Y =5X; +3X5+25 -“&mm

(PRl /45 3/49 3/49 /49

E[Y} = Z Z P($1, 3?2) (55111 + 3xq + 25) 3/49 1749 1749 2/49
[CT 3/45 1749 /49 249

PETRl s/40 2049 2149 4149

T ®2

= P(1,1)(5x1+3x1+25)+
P(1,5) (5% 1 +3 x5+ 25) +
P(1,10) (5 x 143 x 10 + 25) +

Joint Probability Distribution
P(X) =21, Xy = 12)

Calculating the Expected Value

— X
Y =5X; 43X, +25 EECECHTNES
‘)(1 9/49 3/49 3/49 6/49
= Z Z P(l‘l, 332) (53’)1 + 3372 + 25)

3/49 1/49 1749 2/49
zy T2

LTI 3/49 1749 1/49 2/49
= P(L,1)(5x14+3x1+25)+
P(1,5) (5% 1 +3 x5+ 25) +
P(1,10) (5 x 143 x 10 4 25) +
)(
(5

PXTON 6/49 2/49 2/49 4749
Joint Probability Distribution
P(X, =1, Xp = x2)

P(1,25) (5 x 143 x 25+ 25) +
P(5,1)(5x5+3x1+25)+

Calculating the Expected Value
Y =5X;+3X2+25

1 9/49 3/49 3/49  6/49
ElY]= E g P(z1,22) (521 + 32 + 25) 3/49 1749 1149 2/49
AT 3/49 1/49 1/49  2/49
PITI 6/49 2/49 2/49 4/49

1 o

= 9/49 (33)+
3/49 (45) +
3/49 (60) +
6/49 (105) +

This is exhausting ...

P(X1 =21,X2 = 12)

Xo
=IIIBIIW

Joint Probability Distribution

Lowercase Letters

are Constants

Linearity of Expectation (i i)

ElaX+Y +b]=adE[X]+E[Y]+D
» What is the expected value of Y2
E[Y] = E[5X; + 3Xs + 25]
=E[5X1] + E[3X;] + E [25] tineariy of expeciation

Expectation of constant

=E [5X1] +E [3X2] +25 e consiant.

ElaX+Y +b)=aE[X]+E[Y]+)
» What is the expected value of Y2
E[Y] =5E[X1] 4+ 3E [X;] + 25 ~ 102.71
6w
7 7
» What if X; and X; were sampled without replacement?2

> CanX,=X,=5¢2 @

» Canlsample two dimes '.. ‘/C

3/49  (53) + There is a better way!
=5E [Xl] + 3E [XZ] —+ 25 Linearity of expectation
. Lowercase Letters .
Linearity of Expectation ot Ramdom) Dependent Random Variables

Population of coins in my pocket.

Sampling with without replacement
2
Quarter

Xo
[ e > e =
I x 10¢ @ e

Xl 5¢
10¢ 1x5¢ @
Nickel
25¢
. @@P@

Joint Probability Distribution Penn

P(X; =2:.Xo =2 i ob, Distribution
(X 1,22 2) Dime | Quarter

3/7 1/7 1/7 217
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Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

2
10¢ 25¢ 2x25¢

LTI (3/7)(2/6)
1% 10¢ @
¥ pime
s @
Nickel
- Q@@
Joint Probability Distribution Penny

P(X1 = LEl,XQ = wz)
3/7 1/7 /7  2/7

SinEIe SamEIe Prob. Distribution

Dependent Random Variables

Sampling with without replacement

Population of

pocket.

“13/7)(2/6) (317)(1/6)
1x10e @D
) bime

s @
<.~ Nickel
- @@

Joint Probability Distribution Penn

P(Xl =21, X2 = x2) mﬁ .Dl.m; Q:Jun.elr

3/7 1/7 17 217

Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

X

1 x 10¢

(3/7)(2/6)  (3/7)(1/6) @
0 (1/7)(3/6) 24 Dime
x, il
R Nickel

- Q@@

enny

— — Single Sample Prob. Distribution
P =21, Xz =) ikl bime [ Guarer

3/7 177 17 217

Joint Probability Distribution

Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

2

(3/7)(2/8)  (3/7)(1/6)

(1/7)(3/6)  (1/7)0

s ©
& Nickel
v @O
Joint Probability Distribution Penn:

P(X] =21, X2 — IQ) SInEIe Samsle Prob. Distribution

3/7 1/7 17 2/7

Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

LCR (3/7)(2/6)  (3/7)(1/6) (3/7)(1/6)  (3/7)(2/6)
1x10¢ (@
(/7)3/8) (/710 (1/7)(1/6)  (1/7)(2/6) < Dime

[Tl (1/7)3/6)  (1/7)0176) (1/7)0  (1/7)(2/6) 1x5¢ N -
ickel
PEPR (2/7)(3/6)  (2/7)(1/6) (2/7)(1/6) (2/17)(1/6)
o Q@@
Joint Probability Distribution Penn
P(X; = 1, X = )

SinEIe SamEIe Prob. Distribution

3/7 1/7 17 2/7

Dependent Random Variables

Sampling with without replacement

Population of coins in my pocket.

Xo
B >

LTI 6/42 3/42 3/42 6/42
1x10e @,
7 ome

3/42 0 1742 2/42
10¢ [KIZA 1/42 0 2/42 1 x5¢ @
<~ Nickel
6142 2/42 2/42 2/42
3x1¢
Joint Probability Distribution Penn

P(Xl =z, X2 = IQ) m% .Di.m; G:lan.e.r

3/7 1/7 17 217
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Dependent Random Variables
Sampling without replacement XQ

Y =5X; +3X2+ 25 ERINCRICREE

AT 6/42 3/42 3/42 6/42

— 5S¢ 3/42 0 1742 2/42
E[Y]= Z ZP(Ilv 2) (521 + 3w2 +25) X4 B2 e o o

oor2 PPl s/22 242 2/42 2/42
= (6/42) 33 + (3/42) 45 + (3/42) 60 + (6/42) 105+ joint Probability Distribution
(3/42) 53 + (0) 65 + (1/42) 80 + (2/42) 125 + P(X, =1, X2 = 2)
(3/42) 78 + (1/42) 90 + (0) 105 + (2/42) 150 +
(6/42) 153 + (2/42) 165 + (2/42) 180 + (2/42) 225
719

~ 102.71 We have seen this before!

E[Y] =5E[X;] + 3E [X3] 4+ 25 ~ 102.71

Expected Value and

summary Linearity of Expectation

» Expected Value
E[X]=) 2P(z)
TzeX
» Linearity of Expectation
ElaX+Y +b=adE[X]+E[Y]+D

» independence not required
» Proof?

Proving Linearity of Expectation

ElaX +bY +¢] = Z Z P(z,y)(azx + by + ¢)
zeX yey

= Z Z P(z,y)ax + Z Z P(z,y)by + Z Z P(z,y)c

zeX yeY TEX yeY zeX yeY

= Z Z P(z,y)ax + Z Z P(z,y)by + ¢

zeEX yey zEX yeYy

ElaX +bY +¢] = Z Z P(z,y)az + Z Z P(z,y)by + ¢

zeX yey zeX yey

\ Condifional Defn.  P(z,y) = P(z | y)P(y) = P(y| )P (x) \

Using the above identity:

Z Z P(z,y)ax = Z Z P(y|z)P(z)ax

zEX yeY TEX yey
Factoring out the
terms that donot = @ Z P(”[;)x Z P(y | Qj) =a Z P(r)x
depend ony

zeX yey zeX

Sumsto 1

= aE[z]

Proving Linearity of Expectation

E[aX +bY + ¢ = aE[z] +> Y Playby+e
zeX ye)

The remainder of the proof is left as an exercise.

Expected Value and

Summary Linearity of Expectation

» Expected Value

E[X]=) aP(x)
rzeX
» Linearity of Expectation

ElaX+Y +b]=adE[X]+E[Y]+D
> independence not required
> What about E[XY] £ E[X]|E[Y]
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Expected Value and

Summary Linearity of Expectation

» Expected Value

E[X] = Z zP(x)

TEX
» Linearity of Expectation

ElaX+Y +b]=aE[X]+E[Y]+b
» independence not required

> If X and Y are independent then E[XY] = E[X|E[Y]

Characterizing Random Variables

» Probability Mass Function (PMF): Discrete Distribution

» The probability a variable will take on a particular value

» Probability Density Function (PDF): Continuous Distributions
> Not covered ... here there be dragons
» Expectation

» The average value the variable takes (the mean)

» Variance
» The spread of the variable about the mean

The Variance
Var [X] = E [(X _E [X])2] =Y (@ -E[X))*P(2)

» Useful Identity:

Var [X] = E [(X _E [X])Q]

Expanding the square — T} |:X2 —2XE [X] -+ E [X]Q}

» Useful Identity:

Var [X] = E [(X “E [X]f]

Expanding the square — E |:)(2 — 2XE [X] + E [X]2:|
constant
A
Linearity of expectation — E [XZ} —_ E [2X [X” + E |:E [X}2:|

Linearity of expectation — E [X2] — 2E [X] E [_X] Jr E [X]Z

Agebia — [XZ] _E [X]Q

The Variance

Var [X] = E [(X ~E [X])Z] =Y (= -E[X))’P(2)
reEX
=E[X?] -E[x]?
» Properties of Variance:
Var [aX + b = a®*Var [X] 4+ 0
> If Xand Y are independent:

Var [X + Y] = Var [X] + Var [Y]

=E[X?’| -E[X]
» Properties of Variance:
Var [aX + b] = a®*Var [X] + 0
> If Xand Y are independent:
Var [X 4+ Y] = Var [X] + Var [Y]
» Standard Deviation (easier to interpret units)

SD [X] = v/ Var [X]

> Useful identity
SD [aX + b] = |a| SD [X]
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Covariance

» The covariance describes how to variables vary jointly
Cov[X, Y] =E[(X —E[X])(Y — E[Y])]
=E[XY] - E[X]|E[Y]
» Basic properties of the covariance
Cov[aX + u,bY + v] = abCov[X,Y]
> If X and Y are independent then: E[XY] = E[X|E[Y]
Cov[X,Y]=0

Covariance

Cov[X,Y] = E[(X - E[X])(Y - E[Y])]

Correlation e

» The units of covariance can be difficult to reason about
» Correlation is the “normalized” covariance

Cov[X,Y Cov[X,Y
PXY = COI‘I‘[X, Y] — OV[ ) ] _ OV[ ) ]

\/Var[X],/Var[Y] SD[X]SD[Y]
» A number between-1and 1
pxy = —1  m— pxy 20 e— pyy =1

af+ A v 3 3 - . 3
. M

ol v. o . ot of o+ o

Practice Distributions

Bernoulli PMF
Valve 111 0 | pyo//bitly/ds100-sp18-var

Chance P 1-p

>

Var[X] =E [(X — E[X])?] =E [X?] - E[X]*
E[X] =) aP(z)

TEX

What is the value of the following in terms of p
E[X] =
Var[X] =

Binary Random Variable (Bernoulli)

» Takes on two values (e.g., (0,1), (heads, tails)...)
X ~ Bernoulli(p)
» Characterized by probability p  FZI=N I

Chance P 1-p
» Expected Value:

E[X] =
» Variance

Var[X] =

Binary Random Variable (Bernoulli)

» Takes on two values (e.g., (0,1), (heads, tails)...)
X ~ Bernoulli(p)
» Characterized by probability p fvave | 1 [ 0 |
> Expected Value: Ghonce @ ®
EX]|=1xp+0x(1—p)=p
» Variance

Var [X] = (1-p)*+p+ (0—p)*(1 —p) =p(1 —p)
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Another Example

> | like to eat shishito peppers

» Usually they are not too spicy ...
> but occasionally you get unlucky (or lucky)

> Suppose we sample n peppers at random from
the population of all shishito peppers

» can we do this in practice?2

» Difficultl Maybe cluster sample farms?2

» What can our sample tell us about the
populationg

Formalizing the Shishito Peppers

» Population: all shishito peppers

» Generation Process: simple random sample

» Sample: we have a sample of n shishito peppers

» Random Variables: we define a set of n random variables

X1, Xa,... X, ~ Bernoulli(p¥)

> Where X; = 1 if the i pepper is spicy

and 0 otherwise. Population Parameter

(We don't know it.)

Remember star is for the universe.

» Random Variables: we define a set of n random variables

Xi1,Xs,...X,, ~ Bernoulli(p*)

> Where X; = 1 if the i'"" pepper is spicy

and 0 otherwise. Population Parameter

(We don't know it.)

Remember star s for the universe.

» Sample Mean: Is a random variable

1 n
X=- Z X;
i=1
> Expected Value of the sample mean:

X = %ixl | X1, Xs,... X, ~ Bernoulli(p") |

<
Il
—

> Expected Value of the sample mean:

Linearity of
1 n M expectation
E[X]=E|-Y X E[Xi]
n
i=1

n

1 Let u be the

= — b = [ expected value

n 4 1 for all X;

i=

The expected value of
* For the shishito peppers the sample mean is

=p setting we have u = p*

the population mean!

lzn: ‘Xl,Xg,...Xn ~ Bernoulli(p*) ‘

> Expected Value of the sample mean:

» The sample mean is an unbiased estimator of the
population mean

Bias =E [X]| — =0

Sample Mean is a Random Variable

F-ipw

3\>—‘

» Expected Value:

n
1
el
=1 niA
» Variance:
Var [X] = Var {:LZXJ
i=1

10
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» Variance:

Var [X] = Var {i > Xz} = S Var [Z Xz}

1
i = 5 D Var[X]
i=1
» In the shishito peppers example are the X, independent?
» Depends on the sampling strategy
2
» Random with replacement (after tasting)> Yes! W

» Random without replacement > No!
» Correction factor is smalll for large populations

» Variance:
1 n 1 n
Var [X] =Var |- ) X;| == Var E X | Fropery of e
n n2 Variance
i=1 i=1
1 n
Ifthe Xiare — _—_ .
independent! n2 Z Var [Xl]
n
Define the 1 5
variance of X = — ot = —
as o? ne <
i=1
For shisht (1 ) sample mean decreases af a
or shishfo —_
comporutn — P p rate of one over the sample size
replacement n

Summary of Sample Mean Statistics

E[X]—E |13 x, —lzn: =
[X]=E| > % — a2

> Variance:
Assuming X; are

Var [X] = Var [ Xi] -7 independent

n

i=1
» Expected Value
1 n ]_ n
56513 x| 13-
nia i=1
» Variance:
1 02 pssuming
< Ssumin, are
Var [X] = Var | — XZ = — \'ndepen%e‘m
n n
i=1

» Standard Error:
_ — o
SE (X) = Var [X] = % «—— Square root law

= has a probability
X mass function

ALSO KNOW AS A
SAMPLING DISTRIBUTION

The Distribution of an Estimator

» Resampling the population to estimate the sample distribution.

Variability in my

Population **** . rot
. A estimation
m@“”\ » Xsample 1 procedure.
id m
Sample 2
pibtboran A
L

%
L]
M{M}»xmpleg oo

7.6 Billion People

A

11
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1%

Central Limit Theorem

» Describes the limiting shape of the
distribution of the sample average

» The sample average behaves
approximately like a random draw /\
from the normal distribution |

> Assumes independent and identically
distributed observations

Law of Large Numbers

« M Describes the relationship between sample
TAWAARY mean and the population mean.
i

As the sample size grows the sample mean
approaches the population mean.

Booftstrap the Distribution of an Estimator

» Simulation method to estimate the sample distribution.

Pretend this is your population!

**** Bootstrap Samples

o M
S ”70/

M

7.6 Billion People

Bootstrap the Distribution of an Estimator

» Simulation method to estimate the sample distribution.
Pretend this is your population!

Variability in my

**ii Booftstrap Samples
go“'\p\ \ **** * Xsample 1 estimation

pS ;%/ } § procedure.
Sy BABA» Lot A

a Confidence
*ii* » Xsample 3 tl’:olerjglce

Boot Strap Confidence Interval

» Construct a 95% confidence
interval by taking the 2.5% and
(100 - 2.5)% quantiles

» We will return to this in a few
weeks...

95%

2.5% ‘ 2.5%

o whh ® © o A "

Connection to Loss

Minimization

12
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The Sample Loss

» Recall earlier that we used the average loss

Loss on a single: Parametric

Model

Example
(e.g.. L2, L1, Huber)

Lug(6) =~ 36X, fo(X0))
i=1

n -
Average loss
for my data

Predict Y; (e.g., tip)from X;
(e.g.. table size)

Model Parameters

The Sample Loss

» Recall earlier that we used the average loss
1 n
Lavg(0) = Eem fo(X))

» Notice that this is really a sample loss
» Itis a random variable (depends on X; and Y;)

» How does it relate to the population?
» We will answer this question precisely for the squared loss in the
next lecture using bias and variance
» Today we will related the expected loss to the sample loss

Lu0) = 250 5060

Risk and the Expected Loss

» We can define the expected loss as:

R(0) = E[(Y, fo(X))]

» This is called the risk
» Itis the risk associated with the choice of 6
» Not a random variable

» Given access to the joint probability of X and Y we can
rewrite the risk as:

RO) =D > Uy, fo(x)P(z.y)

TEX yey

» Given access to the joint probability of X and Y we can
rewrite the risk as:

R(O) =Y Uy fo(x)P(z.y)
zeEX yeY
» A natural objective would be to minimize the risk
0 = argmin DN Uy, fo(x))P(x,y)

TEX yey
» Unfortunately, we don't have the joint prob. P(z,y)

» We can approximate P(z,y) with our samples.

» Given access o the joint probability of X and Y we can
rewrite the risk as:

R(O) =D > Uy, fo()P(x,y)

zEX yeY

» The empirical risk approximates the true risk
n

R 1

R(0) ~ R(0) = ;Mi, fo(X) -

» Where the X; and Y; are drawn from the joint probability
(a random sample)

(Xh Yz) ~ P(Iv y)

» Given access to the joint probability of X and Y we can
rewrite the risk as:

RO) =" Uy, fo(x))P(x,y)

TEX yeY

» The empirical risk approximates the true risk

R(0) ~ R(0) = Zé(m f9(Xi))%

» This is just the average loss from before: -

Lavs(0) = = S 0%, fo(X0)
i=1
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Summary

» Today we reviewed

Joint Probability Distributions
Expectation

Variance

Covariance

» Studied Properties of the Sample Mean
» Unbiased
> Law of large numbers: convergence to the population mean
Central Limit Theorem: Distribution

>
» Connected the Average Loss to the Empirical Risk

YV VY

3/14/18
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