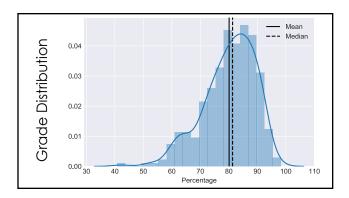
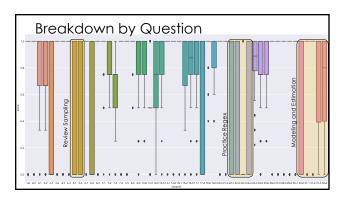


How was the Midterm?

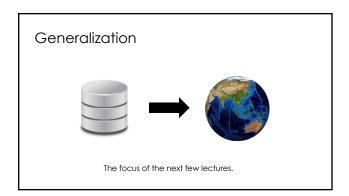


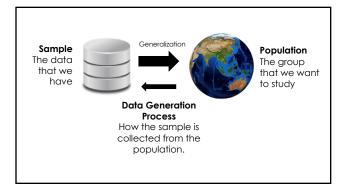


Recap: Modeling and Estimation

- 1. Define the Model: simplified representation of the world
- 2. Define the Loss Function: measures how well a particular instance of the model "fits" the data
- Minimize the Loss Function: find the parameter values that minimize the loss on the data

What does a model that fits the data have to do with the WOrld?

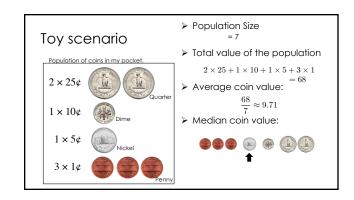


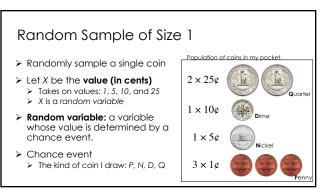


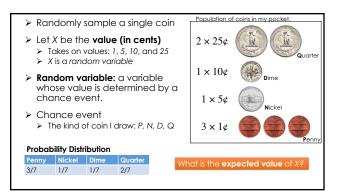
What we will do:

- 1. Examine a Population
- 2. Study a data generation process
 - a. Simulation for insight
 - b. Theory for proof
- 3. Draw conclusions from a sample
 - a. Theory to connect to population
 - b. Bootstrap to go beyond theory

Review Probability Concepts







The Expected Value

$$\mathbf{E}\left[X\right] = \sum_{x \in \mathcal{X}} x \mathbf{P}(x)$$

> Computing expectations:

$$1\frac{3}{7} + 5\frac{1}{7} + 10\frac{1}{7} + 25\frac{2}{7} = \frac{68}{7} \approx 9.71$$

- So the expected value is 9.71...Have you ever seen a 9.71 coin?

 - Is this a problem?

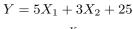
Sampling Twice (Sample size 2)

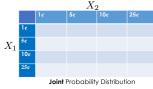
- Suppose I sample two coins with replacement
 - With replacement: put the coin back in pocket after sampling
 Let X₁ and X₂ be the first and second coin values.
- \triangleright A friend gives me 4 more X_1 and 2 more X_2 and a quarter
- > I define a new random variable:

$$Y = 5X_1 + 3X_2 + 25$$

- ➤ What is the value of Y?
- > What is the expected value of Y?

Calculating the Expected Value





 $\mathbf{P}(X_1 = x_1, X_2 = x_2)$

1/7 1/7 2/7

Calculating the Expected Value

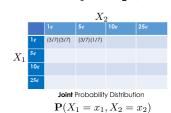
$$Y = 5X_1 + 3X_2 + 25$$

 $P(X_1 = x_1, X_2 = x_2)$

1/7

Calculating the Expected Value

$$Y = 5X_1 + 3X_2 + 25$$

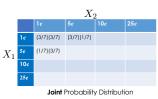


1 × 10¢

3/7 1/7 1/7 2/7

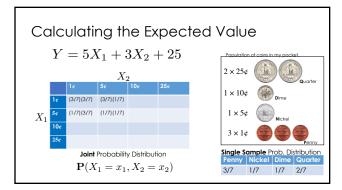
Calculating the Expected Value

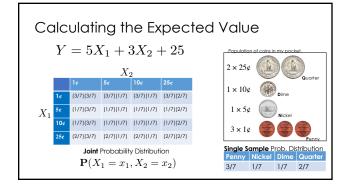
$$Y = 5X_1 + 3X_2 + 25$$

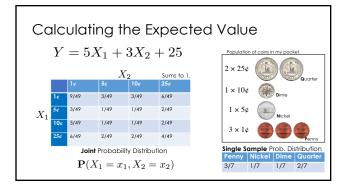


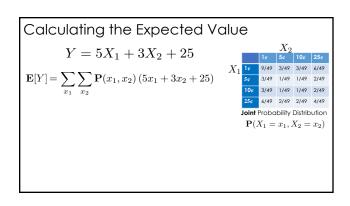


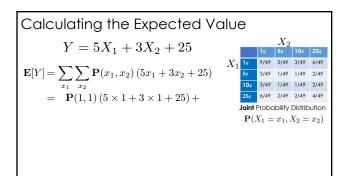
 $P(X_1 = x_1, X_2 = x_2)$

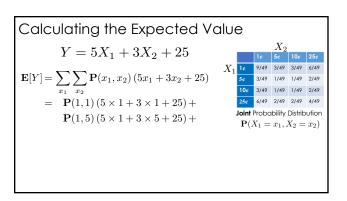








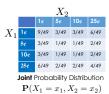




Calculating the Expected Value

 $Y = 5X_1 + 3X_2 + 25$

$$\begin{split} \mathbf{E}[Y] &= \sum_{x_1} \sum_{x_2} \mathbf{P}(x_1, x_2) \left(5x_1 + 3x_2 + 25 \right) \\ &= \mathbf{P}(1, 1) \left(5 \times 1 + 3 \times 1 + 25 \right) + \\ &\mathbf{P}(1, 5) \left(5 \times 1 + 3 \times 5 + 25 \right) + \\ &\mathbf{P}(1, 10) \left(5 \times 1 + 3 \times 10 + 25 \right) + \end{split}$$



Calculating the Expected Value $Y = 5X_1 + 3X_2 + 25$ $\mathbf{E}[Y] = \sum \sum \mathbf{P}(x_1, x_2) (5x_1 + 3x_2 + 25)$ 3/49 1/49 1/49 2/49 3/49 1/49 1/49 2/49 $= \mathbf{P}(1,1) (5 \times 1 + 3 \times 1 + 25) +$ 6/49 2/49 2/49 4/49 Joint Probability Distribution $P(1,5) (5 \times 1 + 3 \times 5 + 25) +$ $P(X_1 = x_1, X_2 = x_2)$ $P(1,10) (5 \times 1 + 3 \times 10 + 25) +$ $P(1,25) (5 \times 1 + 3 \times 25 + 25) +$ $P(5,1)(5 \times 5 + 3 \times 1 + 25) +$

Calculating the Expected Value

$$Y = 5X_1 + 3X_2 + 25$$

$$E[Y] = \sum_{x_1} \sum_{x_2} P(x_1, x_2) (5x_1 + 3x_2 + 25)$$

$$= 19/49 (33) + 1$$
 This is exhausting ...
$$\frac{3/49 (45) + 1}{3/49 (105) + 1}$$

$$\frac{3/49 (105) + 1}{3/49 (53) + 1}$$
 There is a better way!

Linearity of Expectation $\mathbf{E}[aX + Y + b] = a\mathbf{E}[X] + \mathbf{E}[Y] + b$ > What is the expected value of Y? $\mathbf{E}[Y] = \mathbf{E}[5X_1 + 3X_2 + 25]$ $=\mathbf{E}\left[5X_{1} ight]+\mathbf{E}\left[3X_{2} ight]+\mathbf{E}\left[25 ight]$ Linearity of expectation $=\mathbf{E}\left[5X_{1} ight]+\mathbf{E}\left[3X_{2} ight]+25\,$ Expectation of constant. $=5\mathbf{E}\left[X_{1} ight]+3\mathbf{E}\left[X_{2} ight]+25$ Linearity of expectation

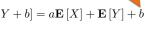
Linearity of Expectation

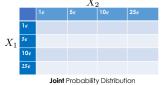
$$\mathbf{E}[aX + Y + b] = a\mathbf{E}[X] + \mathbf{E}[Y] + b$$

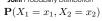
➤ What is the expected value of Y?

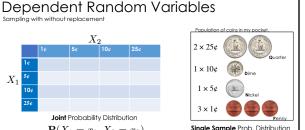
$$\mathbf{E}[Y] = 5\mathbf{E}[X_1] + 3\mathbf{E}[X_2] + 25 \approx 102.71$$

- \blacktriangleright What if X_1 and X_2 were sampled without replacement?
- Can X₁ = X₂ = 5?
 Can I sample two dimes

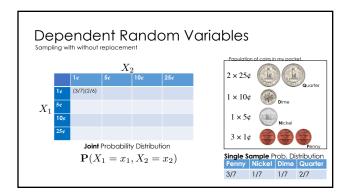


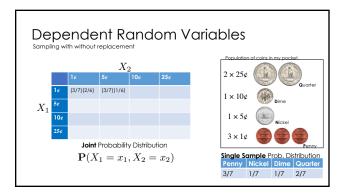


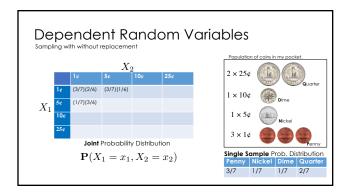


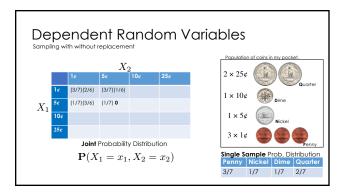


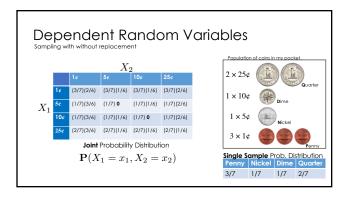
3/7 1/7 1/7 2/7

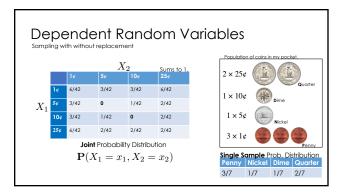












Dependent Random Variables

Sampling without replacement $Y=5X_1+3X_2+25$ $\mathbf{E}[Y]=\sum_{x}\sum_{x}\mathbf{P}(x_1,x_2)\left(5x_1+3x_2+25\right) \quad X_1 \begin{array}{c|cccc} \mathbf{1c} & \mathbf{5c} & \mathbf{10c} & \mathbf{25c} \\ \mathbf{1c} & \mathbf{6/42} & \mathbf{3/42} & \mathbf{3/42} & \mathbf{6/42} \\ \mathbf{3/42} & \mathbf{3/42} & \mathbf{3/42} & \mathbf{3/42} & \mathbf{3/42} \\ \mathbf{10c} & \mathbf{3/42} & \mathbf{1/42} & \mathbf{2/42} \\ \mathbf{10c} & \mathbf{1/42} & \mathbf{1/42} & \mathbf{1/42} \\ \mathbf{10c} & \mathbf{1/42} & \mathbf{1/42} & \mathbf{1/42} \\ \mathbf{10c} & \mathbf{1/4$

25¢ 6/42 2/42 2/42 2/42 Joint Probability Distribution $\mathbf{P}(X_1=x_1,X_2=x_2)$

= (6/42) 33 + (3/42) 45 + (3/42) 60 + (6/42) 105 + (3/42) 53 + (0) 65 + (1/42) 80 + (2/42) 125 + (3/42) 78 + (1/42) 90 + (0) 105 + (2/42) 150 + (6/42) 153 + (2/42) 165 + (2/42) 180 + (2/42) 225

 $=rac{719}{7}~pprox 102.71~$ We have seen this before!

 $\mathbf{E}[Y] = 5\mathbf{E}[X_1] + 3\mathbf{E}[X_2] + 25 \approx 102.71$

Expected Value and Linearity of Expectation Summary

> Expected Value

$$\mathbf{E}\left[X\right] = \sum_{x \in \mathcal{X}} x \mathbf{P}(x)$$

➤ Linearity of Expectation

$$\mathbf{E}\left[aX + Y + b\right] = a\mathbf{E}\left[X\right] + \mathbf{E}\left[Y\right] + b$$

- > independence **not** required

Proving Linearity of Expectation

$$\begin{split} \mathbf{E}[aX + bY + c] &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y)(ax + by + c) \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y)ax + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y)by + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y)c \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y)ax + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y)by + c \end{split}$$

$$\mathbf{E}[aX + bY + c] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y) ax + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x, y) by + c$$

Conditional Defn. $\mathbf{P}(x,y) = \mathbf{P}(x \mid y)\mathbf{P}(y) = \mathbf{P}(y \mid x)\mathbf{P}(x)$

Proving Linearity of Expectation

$$\mathbf{E}[aX+bY+c] = \underbrace{a\mathbf{E}[x]}_{} \mathbb{P}(x,y) + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}(x,y) by + c$$

The remainder of the proof is left as an exercise.

Expected Value and Linearity of Expectation Summary

> Expected Value

$$\mathbf{E}\left[X\right] = \sum_{x \in \mathcal{X}} x \mathbf{P}(x)$$

➤ Linearity of Expectation

$$\mathbf{E}\left[aX + Y + b\right] = a\mathbf{E}\left[X\right] + \mathbf{E}\left[Y\right] + b$$

- > independence **not** required
- ightharpoonup What about $\mathbf{E}[XY] \stackrel{?}{=} \mathbf{E}[X]\mathbf{E}[Y]$

Summary Expected Value and Linearity of Expectation

> Expected Value

$$\mathbf{E}\left[X\right] = \sum_{x \in \mathcal{X}} x \mathbf{P}(x)$$

> Linearity of Expectation

$$\mathbf{E}\left[aX + Y + b\right] = a\mathbf{E}\left[X\right] + \mathbf{E}\left[Y\right] + b$$

> independence not required

ightharpoonup If X and Y are **independent** then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$

Characterizing Random Variables

> Probability Mass Function (PMF): Discrete Distribution > The probability a variable will take on a particular value

> Probability Density Function (PDF): Continuous Distributions

Not covered ... here there be dragons

> Expectation

The average value the variable takes (the mean)

> The spread of the variable about the mean

The Variance

$$\mathbf{Var}\left[X\right] = \mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)^{2}\right] = \sum_{x \in \mathcal{X}} \left(x - \mathbf{E}\left[X\right]\right)^{2} \mathbf{P}(x)$$

➤ Useful Identity:

$$\mathbf{Var}\left[X\right] = \mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)^{2}\right]$$

Expanding the square $=\mathbf{E}\left[X^{2}-2X\mathbf{E}\left[X\right]+\mathbf{E}\left[X\right]^{2}
ight]$

Useful Identity:

$$\begin{aligned} \mathbf{Var}\left[X\right] &= \mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)^2\right] \\ \text{Expanding the square} &= \mathbf{E}\left[X^2 - 2X\mathbf{E}\left[X\right] + \mathbf{E}\left[X\right]^2\right] \\ \text{Linearity of expectation} &= \mathbf{E}\left[X^2\right] - \mathbf{E}\left[2X\mathbf{E}\left[X\right]\right] + \mathbf{E}\left[\mathbf{E}\left[X\right]^2\right] \\ \text{Linearity of expectation} &= \mathbf{E}\left[X^2\right] - 2\mathbf{E}\left[X\right]\mathbf{E}\left[X\right] + \mathbf{E}\left[X\right]^2 \end{aligned}$$

The Variance

$$\begin{aligned} \mathbf{Var}\left[X\right] &= \mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)^2\right] = \sum_{x \in \mathcal{X}} \left(x - \mathbf{E}\left[X\right]\right)^2 \mathbf{P}(x) \\ &= \mathbf{E}\left[X^2\right] - \mathbf{E}\left[X\right]^2 \end{aligned}$$

> Properties of Variance:

$$\mathbf{Var}\left[aX+b\right] = a^2 \mathbf{Var}\left[X\right] + 0$$

> If X and Y are independent:

$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y]$$

$$=\mathbf{E}\left[X^2\right]-\mathbf{E}\left[X\right]^2$$

> Properties of Variance:

$$\mathbf{Var}\left[aX+b\right] = a^2 \mathbf{Var}\left[X\right] + 0$$

> If X and Y are independent:

$$\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$$

> Standard Deviation (easier to interpret units)

$$\mathbf{SD}[X] = \sqrt{\mathbf{Var}[X]}$$

Useful identity

$$\mathbf{SD}\left[aX+b\right] = |a|\,\mathbf{SD}\left[X\right]$$

Covariance

> The covariance describes how to variables vary jointly

$$\begin{aligned} \mathbf{Cov}[X,Y] &= \mathbf{E} \left[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y]) \right] \\ &= \mathbf{E} \left[XY \right] - \mathbf{E}[X]\mathbf{E}[Y] \end{aligned}$$

> Basic properties of the covariance

$$\mathbf{Cov}[aX + u, bY + v] = ab\mathbf{Cov}[X, Y]$$

ightarrow If X and Y are **independent** then: $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$

$$\mathbf{Cov}[X,Y] = 0$$

$\begin{array}{c} \textbf{Correlation} & \overset{\textbf{Covariance}}{\overset{\textbf{Cov}[X,Y] = \textbf{E}[X] - \textbf{E}[X])(Y - \textbf{E}[Y])}} \\ \textbf{Find units of covariance can be difficult to reason about} \\ \textbf{Correlation is the "normalized" covariance} \\ \rho_{X,Y} = \textbf{Corr}[X,Y] = \frac{\textbf{Cov}[X,Y]}{\sqrt{\textbf{Var}[X]}\sqrt{\textbf{Var}[Y]}} = \frac{\textbf{Cov}[X,Y]}{\textbf{SD}[X]\textbf{SD}[Y]} \\ \textbf{Find the position of the part of$

Practice Distributions

Binary Random Variable (Bernoulli)

> Takes on two values (e.g., (0,1), (heads, tails)...)

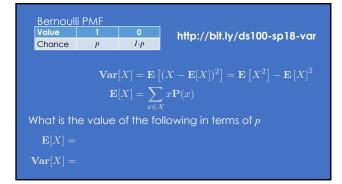
$X \sim \mathbf{Bernoulli}(p)$

- Characterized by probability p
- > Expected Value:

> Variance

$$Var[X] =$$

 $\mathbf{E}[X] =$



Binary Random Variable (Bernoulli)

> Takes on two values (e.g., (0,1), (heads, tails)...)

$$X \sim \mathbf{Bernoulli}(p)$$

Characterized by probability p

Expected Value:

$$\mathbf{E}[X] = 1 * p + 0 * (1 - p) = p$$

Variance

$$\mathbf{Var}[X] = (1-p)^2 * p + (0-p)^2 (1-p) = p(1-p)$$

Another Example

- > I like to eat shishito peppers
- > Usually they are not too spicy ... > but occasionally you get unlucky (or lucky)

- Suppose we sample n peppers at random from the population of all shishito peppers

 - can we do this in practice?
 Difficult! Maybe cluster sample farms?
- What can our sample tell us about the population?

Formalizing the Shishito Peppers

- > Population: all shishito peppers
- > Generation Process: simple random sample
- > Sample: we have a sample of n shishito peppers
- > Random Variables: we define a set of n random variables

$$X_1, X_2, \dots X_n \sim \mathbf{Bernoulli}(p^*)$$

 \succ Where $X_i=1$ if the \it{i}^{th} pepper is spicy and 0 otherwise.

> Random Variables: we define a set of n random variables

$$X_1, X_2, \dots X_n \sim \mathbf{Bernoulli}(p^*)$$

 $\label{eq:continuous} \mbox{\blacktriangleright} \mbox{ Where } X_i = 1 \mbox{ if the i^{th} pepper is spicy and 0 otherwise.}$

> Sample Mean: Is a random variable

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

> Expected Value of the sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $X_1, X_2, \dots X_n \sim \mathbf{Bernoulli}(p^*)$

> Expected Value of the sample mean:

$$\begin{split} \mathbf{E}\left[\bar{X}\right] &= \mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] &= \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}\left[X_{i}\right] \\ &= \frac{1}{n}\sum_{i=1}^{n}\mu = \mu \quad \text{tot the the expected value for all X,} \end{split}$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $X_1, X_2, \dots X_n \sim \mathbf{Bernoulli}(p^*)$

> Expected Value of the sample mean:

$$\mathbf{E}\left[\bar{X}\right] = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu$$

> The sample mean is an unbiased estimator of the

Bias
$$=\mathbf{E}\left[\bar{X}
ight] -\mu =0$$

Sample Mean is a Random Variable

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

> Expected Value:

$$\mathbf{E}\left[\bar{X}\right] = \mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

Variance:

$$\mathbf{Var}\left[\bar{X}\right] = \mathbf{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

Variance

$$\mathbf{Var}\left[\bar{X}\right] = \mathbf{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\mathbf{Var}\left[\sum_{i=1}^{n}X_{i}\right]^{\text{Property of the Variance}}$$

$$_{\text{independent!}}^{\text{If the X}_i \, \text{ore}} = \frac{1}{n^2} \sum_{i=1}^n \mathbf{Var} \left[X_i \right]$$

- In the shishito peppers example are the X_i independent?
 Depends on the sampling strategy
- ➤ Random with replacement (after tasting) → Yes!

➤ Random without replacement → No!

> Correction factor is small for large populations

Variance

$$\mathbf{Var}\left[\bar{X}\right] = \mathbf{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\mathbf{Var}\left[\sum_{i=1}^{n}X_{i}\right]^{\text{Property of the Variance}}$$

If the X_i are
$$=rac{1}{n^2}\sum_{i=1}^n \mathbf{Var}\left[X_i
ight]$$

Define the variance of
$$\mathbf{X}_{i}$$
 as σ^{2} $=\frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2}$ $=\frac{\sigma^{2}}{n}$

For shishto peppers with replacement
$$= rac{p^*(1-p^*)}{n}$$

The variance of the sample mean decreases at a rate of one over the sample size

Summary of Sample Mean Statistics

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

> Expected Value:

$$\mathbf{E}\left[\bar{X}\right] = \mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

Variance.

$$\mathbf{Var}\left[\bar{X}\right] = \mathbf{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] \ = \frac{\sigma^{2}}{n} \ ^{\text{Assuming X, are independent}}$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

> Expected Value:

$$\mathbf{E}\left[\bar{X}\right] = \mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

> Variance:

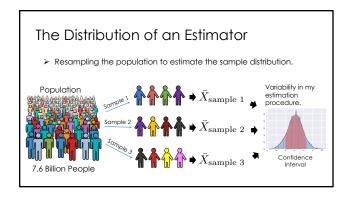
$$\mathbf{Var}\left[\bar{X}\right] = \mathbf{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{\sigma^{2}}{n} \text{ Assuming X, are independent}$$

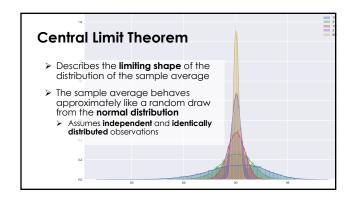
> Standard Error:

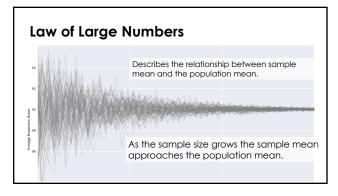
$$\mathbf{SE}\left(ar{X}
ight) = \sqrt{\mathbf{Var}\left[ar{X}
ight]} = rac{\sigma}{\sqrt{n}}$$
 .— Square root law

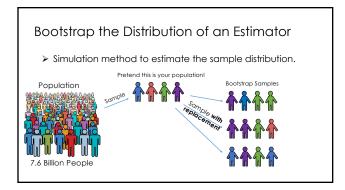
$ar{X}$ has a probability mass function

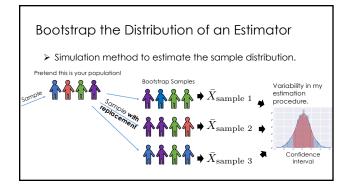
ALSO KNOW AS A SAMPLING DISTRIBUTION

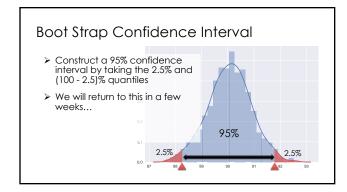








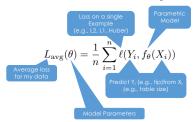




Connection to Loss Minimization

The Sample Loss

> Recall earlier that we used the average loss



The Sample Loss

> Recall earlier that we used the average loss

$$L_{\text{avg}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i))$$

- Notice that this is really a sample loss
 - ► It is a **random variable** (depends on X_i and Y_i)
- How does it relate to the population?
 - > We will answer this question precisely for the squared loss in the next lecture using **bias** and **variance**
 - > Today we will related the **expected loss** to the **sample loss**

Risk and the Expected Loss

Average Sample Loss $L_{\mathrm{avg}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i))$

> We can define the expected loss as:

$$R(\theta) = \mathbf{E} \left[\ell(Y, f_{\theta}(X)) \right]$$

- > This is called the **risk**
 - It is the risk associated with the choice of θ
 - > Not a random variable
- Given access to the joint probability of X and Y we can rewrite the risk as:

$$R(\theta) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \ell(y, f_{\theta}(x)) \mathbf{P}(x, y)$$

Given access to the joint probability of X and Y we can rewrite the risk as:

$$R(\theta) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \ell(y, f_{\theta}(x)) \mathbf{P}(x, y)$$

> A natural objective would be to minimize the risk

$$\hat{\theta} = \arg\min_{\theta} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \ell(y, f_{\theta}(x)) \mathbf{P}(x, y)$$

- ightharpoonup Unfortunately, we don't have the joint prob. $\mathbf{P}(x,y)$
- > We can approximate P(x,y) with our samples.

Given access to the joint probability of X and Y we can rewrite the risk as:

$$R(\theta) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \ell(y, f_{\theta}(x)) \mathbf{P}(x, y)$$

> The **empirical risk** approximates the true risk

$$R(\theta) \approx \hat{R}(\theta) = \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i)) \frac{1}{n}$$

$$(X_i, Y_i) \sim \mathbf{P}(x, y)$$

Given access to the joint probability of X and Y we can rewrite the risk as:

$$R(\theta) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \ell(y, f_{\theta}(x)) \mathbf{P}(x, y)$$

> The **empirical risk** approximates the true risk

$$R(\theta) \approx \hat{R}(\theta) = \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i)) \frac{1}{n}$$

 \succ This is just the average loss from before:

Assuming: $(X_i, Y_i) \sim \mathbf{P}(x, y)$

$$L_{\text{avg}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i))$$

Summary

- Today we reviewed
 Joint Probability Distributions
 Expectation
 Variance
 Covariance
- Studied Properties of the Sample Mean
 Unbiased
 Law of large numbers: convergence to the population mean
 Central Limit Theorem: Distribution
- ightharpoonup Connected the **Average Loss** to the **Empirical Risk**