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Recap ... so far we have covered

» Data collection: Surveys, sampling, administrative data

» Data cleaning and manipulation: Pandas, text & regexes.

> Exploratory Data Analysis
» Joining and grouping data
» Structure, Granularity, Temporality, Faithfulness and Scope
> Basic exploratory data visualization

> Data Visualization:
» Kinds of visualizations and the use of size, area, and color
» Data transformations using Tukey Mosteller bulge diagram

»> An infroduction to database systems and SQL

Today -
Models & Estimation

What is a model?

A model is an an idealized representation of a system

Atoms don't actually Proteins are far
work like this... more complex

We haven't really
seen one of these.

What is a model?e

“Essentially,

all models are wrong,
but some are useful.”

George Box
Statistician
1919-2013
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Why do we build modelse

» Models enable us to make accurate predictions

Why do we build modelse

A few types of models: “physical” or
m eC h O n I STI c . Hanford, Washington (H1) Livingston, Louisiana (L1)

M WORLD BANK

I
Models: Statistical correlations (A) Models: statistical correlations (B)
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Models: statistical correlations (C)

f
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Pérez et al. CISE 2007

Models and the World

> Data Generation Process: the real-world phenomena from which
the datais collected
> Example: everyday there are some number of clouds and it rains or doesn't
> We don't' know or can't compute this, could be stochastic or adversarial

» Model: a theory of the data generation process
> Example: if there are more than X clouds then it will rain
» How do we pick this model?2 EDA2 Art?
» May not reflect reality ... “all models are wrong ..."

» Estimated Model: an instantiation of the model
> Example: If there are more than 42 clouds then it will rain
» How do we estimate it2
» What makes the estimate “good"?2

Example — Restaurant Tips

Follow along with the notebook ...

Step 1: Understanding the Data (EDA)

data = sns.load dataset("tips")
print("Number of Records:", len(data))
data.head()

Collected by a single waiter
over a month

Number of Records: 244

Why?
total_bill  tip sex smoker day time size > Predicf Wh|Ch fobles W|"
[ 16.99 1.01 Female No Sun Dinner 2 ﬁp the highesT
1 10.34 1.66 Male No Sun Dinner 3
B G 05 M W &n 6D » Understand relationship
3 2368 3.31 Male No Sun Dinner beTWeen TObIeS Ond prS
4 2459 361 Female No Sun Dinner 4

Understanding the Tips

04
03
02
0.1
| N e 0.0 0 00T
0 10 20 30 40 50 60 0 2 4 6 8 10
Total Bill in Dollars Tip in Dollars
Observations: Observations:
« Right skewed + Right skewed
+ Mode around $15 + Mean around 3
+ Mean around $20 + Possibly bimodal2 - Explanations2
+ No large bills « Large outliers & Explanations?

Derived Variable: Percent Tip

. tip
Pet-ip = et par * 100 o
0.08
> Natural representation of fips | -
» Why? Tradition in US is to tip %
0.04
> Issues in the plote
> Outliers 0.02
» Explanation? 0.00 1
> Small bills .. bad data? 0 20 40 60
Percent Tip

» Transformations?
» Remove outliers




Step 1: Define the Model

START SIMPLE!!
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Start with a Simple Model: Constant

percentage tlp — 0* «~——— * Means frue parameter

determined by universe

» Rationale: There is a percent fip 6* that all customers pay
» Correcte
> No! We have different percentage tips in our data
» Why? Maybe people make mistakes calculating their bills2
> Usefulg
> Perhaps. A good estimate 6* could allow us to predict future tips ...

» The parameter 6* is defermined by the universe
» we generally don't get to see 6* ...
> we will need to develop a procedure to estimate 6* from the data

How do we estimate the parameter 6*
» Guess a number using prior knowledge: 15%
» Use the data! How?

» Estimate the value 6* as:
> the percent tip from a randomly selected receipt
» the mode of the distribution observed
> the mean of the percent tips observed
> the median of the percent tips observed

» Which is the best?2 How do | define best?
» Depends on our goals ...

Defining an the Objective (Goal)

» ldeal Goal: estimate a value for 6* such that the model
makes good predictions about the future.
> Great goal! Problem?
» We don't know the future. How will we know if our estimate is good?
» There is hope! ... we will return to this goal ... in the future ©

» Simpler Goal: estimate a value for 6* such that the
model “fits” the data
» What does it mean to “fit"” the data?

» We can define a loss function that measures the error in our
model on the data

Step 2: Define the Loss

“Take the Loss”

Loss Functions

» Loss function: a function that characterizes the cost, error, or
loss resulting from a particular choice of model or model
parameters.

» Many definitions of loss functions and the choice of loss
function affects the accuracy and computational cost of
estimation.

» The choice of loss function depends on the estimation task
» quantitative (e.g., tip) or qualitative variable (e.g., political affiliation)
» Do we care about the outliers2
» Are all errors equally costly? (e.g., false negative on cancer test)
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1200

Squared Loss

Widely used loss! 800

The “error” in

2 600
our prediction ]

The predicted value
400

L0y =(@y—0)°

0
An observed data point
Choice for 8

» Also known as the the L2 loss (pronounced “el two”)

—— Squared Loss
—— Observation

» Reasonable?
» 6=y = good prediction =2 good fit = no loss!
» O farfromy = bad prediction = bad fit = lots of loss!

—— Abs Loss

Absolute Loss % Opsorvaton

It sounds worse than it is ...

Absolute value

0 10 20 30 40
Choice for 6

» Also known as the the L' loss (pronounced “el one”)

» Reasonable?
» 6=y = good prediction = good fit = no loss!

N

» O far fromy = bad prediction = bad fit =& some loss

Can you think of another
Loss Function?

Huber Loss 10 ISR
12 —— Observation
» Parameter a that we need to °
choose. 0
ﬁ 75
» Reasonable? ~ 50
» 6=y =2 good prediction 25

= good fit & no loss!

> 6 farfromy = bad prediction
= bad fit & some loss 2

0 10 20 30 40
Choice for 8

» A hybrid of the L2 and L1 losses...

ly — 6] < a
) otherwise

50

The Huber loss function, interactively

20.0
175
15.0
125

10.0

25

00
-100 -75 -5.0 -25 0.0 25 50 75 10.0

Comparing the Loss Functions

50
» All functions are
zerowhen 6 =y 40
> Different penalties %
for being far from ,, 20
observations 8
- 10
» Smooth vs. not — Squared Loss
smooth —— Abs Loss
10 —— Huber Loss
» Which is the best? — Observation
e g -20
> Let's find out o 10 20 30 40 50

Choice for 8




Average Loss

> A natural way to define the loss on our entire dataset is to
compute the average of the loss on each record.

L(0,D)= 1> L0,)
i=1

The set of n data points

» In some cases we might fake a weighted average (when?)
» Some records might be more important or reliable

» What does the average loss look like?

Double Jeopar

Name that Loss!
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Name that loss

1200

Name that loss

1200

1000 30 30 1000  Squared Loss 30 Absolute Loss 30 Huber Loss
800 800
20 20 20 20
4 600 -3 — 3 = 4 600 -3 — 3 -
& -8 — 8 — & -8 — & —
400 10 10 400 10 10
200 200
0
1 | - | O | | | I
0 10 20 30 40 0 10 20 30 40 5( 0 10 20 30 40 50 0 10 20 30 40 o 10 20 30 40 5 0 10 20 30 40 50
Choice for & Choice for 0 Choice for 8 Choice for 8 Choice for 8 Choice for &
(a) (b) (c) (a) (b) (c)
(%]
. N 15
Difference between Huber and L1 (0} Apsolute and Huber Loss | | .
N have nearly identical § | € Squared Loss is slightly
= 10 Values to the right
— Sqaresoss- 20 E >
—— Abs. Loss
—— Huber Loss o—_
-
7 di ith only 5 = 2 5 Absolute Loss
oome ‘|n with only z 3 —— Huber Loss
data points sampled !
-— —— Observations
at random cC 0 15.61116.0
o) AR T R
Corner L -5
(S
% 1 2 30 W E) o—
Q 5 10 15 20 25 30
Theta Values i
Choice for 68




2/27/18

Sensitivity to Outliers
035 34% of loss due
—+— Squared Loss . .
—— Absolute Loss to a single point
—+— Absolute Loss

Recap on Loss Functions

o
w
S

» Loss functions: a mechanism to measure how well a
particular instance of a model fits a given dataset

o
N
o

> Squared Loss: sensitive to outliers but a smooth function

o
)
S

> Absolute Loss: less sensitive to outliers but not smooth

o
o

. » Huber Loss: less sensitive to outliers and smooth but has
Small fraction of an extra parameter to deal with

loss on outliers...

Proportion of the Average Loss
o
>

o
o
&

» Why is smoothness an issue - Optimization! ...

o
=3
=3

60 70

10 20

30 40 50
Tip as % of total bill

Summary of Model Estimation (so far...)

1. Define the Model: simplified representation of the world
» Use domain knowledge but ... keep it simple!
» Introduce parameters for the unknown quantities

2. Define the Loss Function: measures how well a particular instance
of the model “fits” the data

» Weintroduced L2 L', and Huber losses for each record . o o Q

> Take the average loss over the entire dataset S Te p 3 . M I n I I I I IZe Th e I_OSS
3. Minimize the Loss Function: find the parameter values that

minimize the loss on the data

» So far we have done this graphically
» Now we will minimize the loss analytically

Minimizing a Function
» Suppose we want fo minimize:

fO)=@©-37 "

» Solve for derivative = 0:

. o 0 .
A Brief Review of Calculus 55/ (0 =200-3)=0
> Procedure: ’ =
1. take derivative . S —
2. Set equal to zero -4 — = o Minimizer
3. Solve for parameters o 1 2 3 4 5 6
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Quick Review of the Chain Rule

» How do | compute the derivative of composed functions?

First application of chain rule

a9 .
) 2 )

0 .
Using the ) ”;i"(?) %jm "
Choin RUIe Substituting u = exp (sin (0 )) %Sin (9 )

% exp (sin (92)) = (% exp (u)

Derivative of exponent = (exp(u

0 0
Zh(0) = 2 f (9(6)) ey 5,
( s . ) s o Second application of the chain vle = exp (sin (6%)) (% mn(u)’u:gz) %6
= —1f(u —
ou u=g(6) aeg Derivaive of sne funciion = exp (sin (62)) (cos(u)| _92) %92
Derivative of f Derivative X 0
evaluated of g(6) Computing the remaining derivative = exp (sm (92)) cos (92) @92
atg(e) = exp (sin (6?)) cos (62) 20
Bonus material (not covered in lecture) but useful for studying Bonus material (not covered in lecture) but useful for studying
0 0 0
=(0-3)3 = f(0) =2(0 - L 50) = —2(0 - 2 5(0) =300 —3)?
—(0-3) GfO=20-3  SfO)=-20-3)  f0)=36-3)

—

—- afl6

—

e —- affon

= ® Minimizer

a 0 9 2
O =20-3  SfO)=-20-3)  5f(0)=30-3)

All of the above functions have zero derivatives at 6 = 3
= is 6=3 minimizer for all the above functions?
No!

Need to check second derivative is positive...

® Minimizer

92 © ate=3
= 1(0) =60 - 3)

Generally we are interested in convex functions with
respect to the parameters 6.

Convex sets and polygons

» No line segment between any two
points on the boundary ever leaves
the polygon.

» Equivalently, all angles are < 180°.

» The interior is a convex set.

Non-Convex sets and polygons

» There is at least one line
segment between two points
on the boundary that leaves
the set.
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Formal Definition of Convex Functions

http://bit.ly/ds100-sp18-cvx

Curve 1 \‘x Curve 2 s"’ Convexor
\ Epigy Epigraph \\ // Not Convex
— ./
All possib\g orange lines are: )
Convex e onesie \ J'| Nonconvex e
» A function f is convex if and only if:
tf(a) + (1 =) f(b) > f (ta+ (1 —t)b) Curve 3 Curve 4
Ya, Vb, t € [0,1]
Are our previous loss functions convex@ Is a Gaussian convex?
* 10 — exp(=x?)
0 Yes!
0.8
30
g 20 Average Loss? 06
o
= 10 Yes! 0.4
—— Squared Loss
0 —— Abs Loss
-10 ! — Huberloss  (Sym of convex 0.2
— Obsenvation  fnctions is convex)
-20 0.0
0 10 20 30 40 50

Choice for 8

Sum of Convex Functions is Convex

» In class professor Gonzalez was asked: “Are you sure that
the sum of convex functions is convexg”
» The answer is yes! Always!
» Professor Gonzalez should have had a proof ready! ® It's Easy!

» Proposed counter examples ... (not entirely obvious)

Bonus material (not covered in lecture) but useful for studying

Formal Proof

» Suppose you have two convex functions f and g:

tfla)+ @ =) f(b) = f(ta— (1 —t)a)
tg(a) + (1 - t)g(b) > g (ta — (1 - t)a)
Va, Vb, t € [0,1]
> We would like to show:
th(a) + (1 —t)h(b) > h(ta — (1 —t)a)
> Where: h(z) = f(z) + g(z)

Bonus material (not covered in lecture) but useful for studying




» We would like to show:
th(a) + (1 — )A(b) > h(ta — (1 — t)a)

> Where: h(x) = f(z) + g(z)

» Starting on the left side
Substituting definition of h:
thia) + (1 = t)h(b) =t (f(a) + g(a)) + (1 = 1) (f(b) + g(b))

Re-arranging terms: = [tf(a) + (1 =€) f(b)] + [tg(a) + (1 = t)g(b)]
+ (1L —t)g(b)]
Convexitying > f(ta+ (1 —t)b) + g (ta+ (1 —t)b)
Definifion of N = h (ta + (1 — t)b)

Convexityinf > f(ta+ (1 —t)b) + [tg(a)

O

Bonus material (not covered in lecture) but useful for studying

Minimizing the

Average Squared Loss
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Minimizing the Average Squared Loss

_ 1 a 1<~ 9 2
— L —— — (y; —
- 2:3 o(0) = 5 3 55 =)
» Take the derivative 2
= - ;:1 (y; — 6)

Minimizing the Average Squared Loss
1 8 19 5
- L —— — (y; —
n ; »6) =z ; FACY
» Take the derivative 9
> Set the derivative - Z (yi — 0)
equal to zero i=1
2 n
=z i — 0
0=-~ ; )

Minimizing the Average Squared Loss

> Take the derivative 0= _2 Z (yi — 0)
n <
> Set the derivative . =t
equal fo zero
q 0=>" (s~ 0)
» Solve for parameters i=1
Hat
(Estimator) “\,

e - (5)- (&)
0= 3 4 o (50) -

Minimizing the Average Squared Loss

Hat
(Estimator) \

Mean
(Average)!

1 n
0=12 v

=1

» The estimate for percent tip that minimizes the squared
loss is the mean (average) of the percent tips
» We guessed that already!

10
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Minimizing the Average Absolute Loss

1 ¢ 9 1s 9
Lp(0) = — yi — 0 & —Lp(f) == = |yi — 0
Q) n;'l ® Gplo) =2 g ln ol
» Take the derivative NG, .
> How? 05 X 2
Onn_os Goos‘o\w

0

1 S 3 0.0
%LD(Q) = - ;Slgn(yi 9)05/ 1N
What is sign(0) @ = -0 — o Mnintsr

20 25 30 35 4.0

Minimizing the Average Absolute Loss

» Take the derivative o % I
» How? os s o 5
n G 5%
o 1 SIS
—5Lp(0) === sign(y; — 0) o
00 n 4
=1 05 i
. offa8
» Derivative at the corner2 o ® Minimizer

» Whatis the sign of 02
» Convention:
sign(0) =0

Minimizing the Average Absolute Loss

0 ~
> Take the derivative %LD(H) =T Z sign(y; — 0)

» Set derivative to

zero and solve for 1 n
parameters —_ = -1 1
s DI DD

y: <0 yi >0
n n
1)< (S1) @ o (£)+ ()
Yy <0 y; >0 yi <0 yi >0

Minimizing the Average Absolute Loss

» Take the derivative n
> Set derivative to zero and Z 1] = Z 1
solve for parameters yi< 4> 0
Median!
o 2 ik 2
Percent Tips in
sorted order
Y1 Y2 Y3 Va4 Ys
2 2
Percent Tips in ® .@ . ® 2 PS
sorted order
Y Y2 Y3 Ya

Absolute Loss Even and Odd Data

Odd Points

—— Absolute Loss —— Absolute Loss
derivative ©  derivative
—— Observations

Even Points

—— Observations

0 10 20 30 40 50 0 10 20 30 40 50
Percent Tip (6) Percent Tip (6)

The median minimizes the absolute loss 2 Robust!

not sensitive to outliers

Calculus for Loss Minimization

» General Procedure:
> Verify that function is convex (we often will assume this...)
» Compute the derivative
> Set derivative equal to zero and solve for the parameters

» Using this procedure we discovered:

. 1 & .
0po=-35 "y, = D 011 = median(D
L n;y mean(D) 11 = median(D)

0Hubcr =7

11
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Minimizing the Average Huber Loss

Ly —p)?
Lo (0,y) = 3 (v =0) o g
a(ly—0]—%) otherwise

ly — 0| < «

» Take the derivative of the average Huber Loss

8 ii{

Minimizing the Average Huber Loss
a(l,y) = {é (v -0y

a(ly—6l—%) otherwise

ly — 0] < «

» Take the derivative of the average Huber Loss

0, oLy [Ew=09) lvi =0 < a
%LDw)nZ{

i=1

Minimizing the Average Huber Loss

Ty-0)> -0l <a
Lo (evy) =<2 (y ) @ ‘y | .
a(ly—0|—%) otherwise

» Take the derivative of the average Huber Loss

Minimizing the Average Huber Loss

1(y—0) y—0 <a
Lo(o.y) = 2020 o W0
a(ly—0]— %) otherwise

» Take the derivative of the average Huber Loss

0 1| —(yi—0) ly; — 0] < « (9 1 n (yi — 6) lys — 0] < «
= Lp(f) = — = ==

90 (0) n ; { 8 n ; —asign(y; — ) otherwise
ELD _1 Z (i =) lyi =0l <a Visualizing the Derivative of the Huber Loss
o0 n < | —asign(y; — 0) otherwise Alpha = 10

» Set derivative equal to zero:

>, o -

0>y, +a

d. o) -

0<y;,—a

> wi—0 =0

lyi—0|<a

» Solution?

» No simple analytic solution ...
» We can still plot the derivative

= Huber Loss
* derivative
—— Observation;

10
0 /
|
0 10 20 30 40 50
Percent Tip (6)

Liy—0)? y—0l<a
La(0y) = 3(y—0) . |y ‘\l‘
a(ly—60]—%) otherwise

» Large a <& unique optimum
like squared loss

12



Loss

Visualizing the Derivative of the Huber Loss

Alpha =1

—— Huber Loss
15 *  derivative

—— Observations

Many optimal values

9 &

0 10 20 30 40 50
Percent Tip (6)

» Derivative is continuous
» Small @ ?Pmany optima

Alpha =10
—— Huber Loss
*  derivative
—— Observatior

10
0 /
o [
0 10 20 30
Percent Tio (6)

» Large a =& unique opfimum
like squared loss

40 50

Numerical Optimization
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Minimizing "'he from scipy.optimize import minimize
HUbel’ LOSS def huber loss_derivative(est, y_obs, alpha=1):

d = abs_loss(est, y_obs)

Numerically

Often we will use
numerical optimization
methods

return np.where(d < alpha,

~(y_obs - est),
-alpha * np.sign(y_obs-est))

£ = lambda theta: data['pcttip'].apply(
lambda y: huber_loss(theta, y)).mean()
df = lambda theta: data['pcttip'].apply(

lambda y: huber_loss_derivative(theta, y)).mean()

The following are helpful #minimize(f, x0=0.0, jac=df)

properties when using

numerical optimization hess omt
methods: “Jac:
message:

» convex loss function nfev:
nit:

» smooth loss function njev:
status:

» analytic derivative

success:
x:

3.4999248461189802

array([[ 5.08333333]])

array([ 4.36809059e-17])
'Optimization terminated successfully.'
10

7

10

0

True

array([ 15.53063381])

Summary of Model Estimation

1. Define the Model: simplified representation of the world
» Use domain knowledge but ... keep it simple!
» Introduce parameters for the unknown quantities
2. Define the Loss Function: measures how well a particular instance
of the model "fits" the data
» Weinfroduced L?, L', and Huber losses for each record
> Take the average loss over the entire dataset

3. Minimize the Loss Function: find the parameter values that
minimize the loss on the data
» We did this graphically

» Minimize the loss analytically using calculus

» Minimize the loss numerically

Improving the Model

Going beyond the simple model
percentage tip = 6*

> How could we improve upon this model2

» Things to consider when improving the model

> Related factors to the quantity of interest
> Examples: quality of service, table size, time of day, total bill
» Do we have data for these factorsg

> The form of the relationship to the quantity of interest
» Linear relationships, step functions, efc ...

» Goals for improving the model
» Improve prediction accuracy - more complex models
> Provide understanding > simpler models

» Is my model “identifiable" (is it possible to estimate the parameters?2)
> percent tip = 6,* + 6,* &« many identical parameterizations

13
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percentage tip = 0] + 05 * total bill

Rationale: 7
Larger bills result in larger
tips and people tend to

to be more careful 50
or stingy on big tips.

Percent Tip

Parameter Interpretation:

» 6,: Base tip percentage

» 0,: Reduction/increase
in tip for anincrease in
total bill.

30
total_bill

Often visualization can guide in
0 the model design process.

Estimating the model parameters:
percentage tip = 6] + 65 % total bill

> Write the loss (e.g., average squared loss)

n

1
Lp(61,6) = — > (i — (01 + b))
i=1

m Total Bill

i (Total Bill)

i (% Tip)
16.99  5.944673
10.34 16.054159
21.01 16.658734
23.68 13.978041

A @ M 2 o

24.59 14.680765

i ‘91 +02£B ))

i=1

Lp(01,62) =

:M—‘

» Take the derivative(s):

0 1<~ 0 2
6—01LD(91,92) = 52@( i — (01 + O9))
2
— 01 +€21‘ ))
n 1=1

Lp(01,62) = %; (yi — (01 4 Oa;))
> Take the derivative(s): .
%Lp(al,eg) - _% ™ (i — (61 4 6a)
B%Lp(al,@) _ _% ™ (i — (01 + o))
= —% . — (01 + b225)) ;

92
06,

Oz

Z 91 +92$1))

i=1

917 02

3\**

» Take the derivative(s):

9 2 &
8791[/17(91702) i~ ; (yi — (01 + 0224))
0 2 ¢
%Lv(el,%) = ; (ys — (01 + O22:)) 2

» Set derivatives equal to zero and solve for parameters

Solving for 6,

— (01 + O22;))

( ) _nel_ezixi>

e Sui=nb+6:>
i=1 i=1

?

:\w SRR

/N

14
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Solving for 6,

n n 1 n 1 n
Zyi:nal-i-ezzm =» ;Zyi:01+92gzxi
i=1 i=1 i=1 i=1
> Define the average of x and y: @

R =01+ 01
.r.fnlz:;.rl |:> 1 2

§1=%Zyi 0, =1y — bOx

scraten | @y = g — 0o

Solving for 6,

P 9
7L’D(01,92) = *72(117 - (01 +02$1))3§7
06 N

9 n
- _z 1 — 0115 — Oox?
- n ; (ylxl elxz 921’2)

() (150 050)

3

Scratch 91 = g _ 92i'

Solving for 6,

o - 7% ((z;w) _ <912x> ezgx?)

L Zyizizalzxi+022$§
i=1 i=1 i=1
L>1” o IN L el
E;yzxzf 1%;551“’ 2E;$z

Scratch 91

Il
R

I
D

[\
8l

Solving for 6,

1 & 1< 1<
§ _ 7}: X 72: 2
n 4 lyixiieln, 1361-0—92”' 1.1’1-
1= 1= 1=

7:—lT‘,

N N TY = 017 + Oo22

System of
Linear Equations

» Substituting 6, and solving for 6,
zY = (§ — 027) T + 022

01 =y — 0T = §T — 0272 + pa?

/ =gz + 6 (?—a?)

g, = I8 _ 5 5im (# 1) (v )
z? — 72 2 i (e - )

Ty = 0% + 0y

i (.L72 — ‘Z.Lt) = i (JL,Q —Txr; + 2 — Tx; — 72+ ixt)
i=1 i=1
= Z (a7 — 22; + 2° — 2% + 33;)

i=1
Denominator =3 (G- 2 - 2 + o)
Derivation =1

Skipped in Class =Y (@i-3) -4y w

» Completing the squares:

15
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> Complehng the squares:

n
Z YiT; — YT) Z ((yiwi + 9T — yiT — Ya;) + ¥ + yo; — 2yT)
i=1 i=1

n

Numerator — =>_ (=) (i =) +yiz + i - 257)
Derivation

Skipped in Class -

Il
-

(s = 9) (i — 3) + 3 (i + s — 257)

i=1

i

Il

Il
-

(yi — 9) (z; — T) + nyz + ynT — 2nyz

(yi = 9) (z; — T)

I
vMS

Il
-

Summary so far ...

> Step 1: Define the model with unknown parameters
percentage tip = 0] + 65 * total bill

> Step 2: Write the loss (we selected an average squared loss)

1 — 9
p(01,02) = - Zl (yi — (01 + O225))
i=
» Step3: Minimize the loss
> [ Analyfically (using calculus) |
» Numerically (using optimization algorithms)

Z — (61 + Oa,))?

i=1

Lp(61,02) =

SM—'

» Step3: Minimize the loss
> [ Analytically (using calculus) |
» Numerically (using optimization algorithms)

0

6761LD(91’02 = **Z — (61 + 02;))
9 B n
7LD(91,02 - *E 01 +02$1))
002

> Set derivatives equal to zero and solve for parameter values
01 = — Os7

— __ 1 n _ _

TY—§T g e (i —E) (i — Y)

T2 =2 1 n L =)\2

12— - Do (@i — )

» s this a local minimum?

0y =

? 2~ 0 2

TQ%LD(‘%%) = ; 20, (yi — (61 + O23)) = - 2 -1=2
P 2~ 0 2,

R Lo(br.6:) =~ ; (i = (Or + 0p4)) = ~ ;x >0

Visualizing the Higher Dimensional Loss

» What does the loss look like?
» Go to notebook ...

loss

01'%2. =~ 05°

1
thetal 35, , 18
45 25 theta0

“Improving” the Model

(more...)
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percentage tip = 0] + 05 xis Male
+ 03 x is Smoker + 0] * table size

Rational:
Each term encodes a potential factor that could

affect the percentage tip.

Possible Parameter Interpretation: Difficult
» 6;: base fip percentage paid by female non- to
smokers without accounting for table size. Plot

» B, fip change associated with male patrons ...
Go to Notebook

Maybe difficult to estimate ... what if all smokers
are male?

Define the model

» Use python to define the function

def f(theta, data):

return (
theta[0] +
theta[l] * (data['sex'] == 'Male') +
theta[2] * (data['smoker'] == "Yes") +

theta[3] * data['size']

Define and Minimize the Loss

def 12(theta):
return np.mean(squared_loss(f(theta, data), data[ 'pcttip’]).values)

minimize (12, x0=np.zeros(4))

fun: 36.25888793122608
hess_inv: array([[ 5.00852276, -1.03468734, -1.13297213, -1.36869473],
[-1.03468734, 2.06166674, 0.00679159, -0.11857307],
[-1.13297213, 0.00679159, 2.08462848, 0.14029876],
[-1.36869473, -0.11857307, 0.14029876, 0.550805281])
jac: array([ 3.81469727e-06,  3.3378601le-06,  4.76837158e-07,
8.10623169e-06])
message: 'Optimization terminated successfully.'
nfev: 84
nit: 13
njev: 14
status: 0
") success: True
x: array([ 18.73866929, -0.73513124, 0.16122391, =-0.87437012])

Define and Minimize the Loss

def 11(theta):
return np.mean(abs_loss(f(theta, data), data['pcttip']).values)

minimize(1l1l, np.zeros(4))

fun: 3.90957158852356

hess_inv: array([[ 443.57329609, -215.55179077, -211.52560242, -109.7383045 ],
[-215.55179077, 104.77953797, 102.80962477,  53.31466531]
[-211.52560242, 102.80962477, 100.96345597,  52.31890909]
[-109.7383045 ,  53.31466531,  52.31890909,  27.15457305]])

j array([ 0.00750431, 0.00340596, 0.00340596, 0.01979941])
'Desired error not necessarily achieved due to precision loss.'
1104
31
182
2
False
array([ 18.02471408, -0.72038142, -0.9579457 , -0.77126898]

Define and Minimize the Loss

def huber(theta):
return np.mean(huber_ loss(f(theta, data), data['pcttip']))

minimize(huber, np.zeros(4))

fun: 3.4476306812527757

hess_inv: array([[ 77.24012512, -19.71060902, -26.073196 , -20.40690306]
[-19.71060902, 20.85365616, 4.85116291,  2.01663757],
[-26.073196 ,  4.85116291, 28.8990574 ,  5.65213441]
[-20.40690306,  2.01663757, 5.65213441, 6.76874477]])

jac: array([ -1.19209290e-07, -8.94069672e-08, -1.19209290e-07

-1.78813934e-07])

message: 'Optimization terminated successfully.

150

21

25

4

True

array([ 18.53021329, -0.90174037, -0.87843472, -0.84144212)
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