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Data Science 100

Lecture 13: 
Modeling and Estimation

Slides by:

Joseph E. Gonzalez, jegonzal@berkeley.edu

2018 updates - Fernando Perez, fernando.perez@berkele.edu

?

Recap … so far we have covered
Ø Data collection: Surveys, sampling, administrative data

Ø Data cleaning and manipulation: Pandas, text & regexes.

Ø Exploratory Data Analysis
Ø Joining and grouping data
Ø Structure, Granularity, Temporality, Faithfulness and Scope
Ø Basic exploratory data visualization

Ø Data Visualization:
Ø Kinds of visualizations and the use of size, area, and color
Ø Data transformations using Tukey Mosteller bulge diagram

Ø An introduction to database systems and SQL

Today –
Models & Estimation

What is a model?

What is a model?
A model is an an idealized representation of a system

Atoms don’t actually 
work like this…

Proteins are far 
more complex

We haven’t really 
seen one of these.

“Essentially, 
all models are wrong, 

but some are useful.”

George Box
Statistician
1919-2013 
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Why do we build models?

Why do we build models?
Ø Models enable us to make accurate predictions

Ø Provide insight into complex phenomena

A few types of models: “physical” or 
“mechanistic”

Models: Statistical correlations (A)

Nomura et al, PNAS 2010

Models: statistical correlations (B)

Massouh et al. IROS 2017
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Models: statistical correlations (C)

Pérez et al. CISE 2007

Models and the World
Ø Data Generation Process: the real-world phenomena from which 

the data is collected
Ø Example: everyday there are some number of clouds and it rains or doesn’t
Ø We don’t’ know or can’t compute this, could be stochastic or adversarial 

Ø Model: a theory of the data generation process
Ø Example: if there are more than X clouds then it will rain
Ø How do we pick this model? EDA? Art?
Ø May not reflect reality … “all models are wrong …”

Ø Estimated Model: an instantiation of the model
Ø Example: If there are more than 42 clouds then it will rain
Ø How do we estimate it?
Ø What makes the estimate “good”?

Example – Restaurant Tips
Follow along with the notebook …

Step 1: Understanding the Data (EDA)

Collected by a single waiter 
over a month

Why?

Ø Predict which tables will 
tip the highest

Ø Understand relationship 
between tables and tips

Understanding the Tips

Observations:
• Right skewed
• Mode around $15
• Mean around $20
• No large bills

Observations:
• Right skewed
• Mean around 3
• Possibly bimodal? à Explanations?
• Large outliers à Explanations?

Derived Variable: Percent Tip

Ø Natural representation of tips
Ø Why? Tradition in US is to tip %

Ø Issues in the plot?
Ø Outliers
Ø Explanation? 

Ø Small bills … bad data?
Ø Transformations?

Ø Remove outliers

pct tip =
tip

total bill

⇤ 100
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Step 1: Define the Model
START SIMPLE!!

Start with a Simple Model: Constant

Ø Rationale: There is a percent tip θ* that all customers pay
Ø Correct?

Ø No!  We have different percentage tips in our data
Ø Why? Maybe people make mistakes calculating their bills?

Ø Useful? 
Ø Perhaps.  A good estimate θ* could allow us to predict future tips …

Ø The parameter θ* is determined by the universe
Ø we generally don’t get to see θ* …
Ø we will need to develop a procedure to estimate θ* from the data

percentage tip = ✓⇤ * Means true parameter
determined by universe

How do we estimate the parameter θ* 
Ø Guess a number using prior knowledge: 15%

Ø Use the data!  How?

Ø Estimate the value θ* as:
Ø the percent tip from a randomly selected receipt
Ø the mode of the distribution observed
Ø the mean of the percent tips observed
Ø the median of the percent tips observed

Ø Which is the best?  How do I define best?
Ø Depends on our goals …

Defining an the Objective (Goal) 
Ø Ideal Goal: estimate a value for θ* such that the model 

makes good predictions about the future.
Ø Great goal! Problem?

Ø We don’t know the future.  How will we know if our estimate is good?
Ø There is hope! … we will return to this goal … in the future J

Ø Simpler Goal: estimate a value for θ* such that the 
model “fits” the data
Ø What does it mean to “fit” the data?
Ø We can define a loss function that measures the error in our 

model on the data

Step 2: Define the Loss
“Take the Loss”

Loss Functions
Ø Loss function: a function that characterizes the cost, error, or 

loss resulting from a particular choice of model or model 
parameters.

Ø Many definitions of loss functions and the choice of loss 
function affects the accuracy and computational cost of 
estimation.

Ø The choice of loss function depends on the estimation task
Ø quantitative (e.g., tip) or qualitative variable (e.g., political affiliation)
Ø Do we care about the outliers?
Ø Are all errors equally costly? (e.g., false negative on cancer test)
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Squared Loss

Ø Also known as the the L2 loss (pronounced “el two”)

Ø Reasonable?
Ø θ = y è good prediction è good fit è no loss!
Ø θ far from y è bad prediction è bad fit è lots of loss!

L (✓, y) = (y � ✓)2

The predicted value

An observed data point

The “error” in 
our prediction

Widely used loss!

Absolute Loss

Ø Also known as the the L1 loss (pronounced “el one”)

Ø Reasonable?
Ø θ = y è good prediction è good fit è no loss!
Ø θ far from y è bad prediction è bad fit è some loss 

It sounds worse than it is …

L (✓, y) = |y � ✓|
Absolute value

Can you think of another 
Loss Function?

Huber Loss
Ø Parameter 𝛼 that we need to 

choose.

Ø Reasonable?
Ø θ = y è good prediction 

è good fit è no loss!
Ø θ far from y è bad prediction

è bad fit è some loss 

Ø A hybrid of the L2 and L1 losses…

L↵ (✓, y) =

(
1
2 (y � ✓)2 |y � ✓| < ↵

↵
�
|y � ✓|� ↵

2

�
otherwise

The Huber loss function, interactively Comparing the Loss Functions

Ø All functions are 
zero when θ = y

Ø Different penalties 
for being far from 
observations

Ø Smooth vs. not 
smooth

Ø Which is the best?
Ø Let’s find out

Extend beyond
single 

observation?
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Average Loss
Ø A natural way to define the loss on our entire dataset is to 

compute the average of the loss on each record.

Ø In some cases we might take a weighted average (when?)
Ø Some records might be more important or reliable

Ø What does the average loss look like?

L (✓,D) =
1

n

nX

i=1

L(✓, yi)

The set of n data points Double Jeopardy 
Name that Loss!

(a) (b) (c)

Name that loss

(a) (b) (c)

Name that loss

Squared Loss Absolute Loss Huber Loss

Difference between Huber and L1

Zoomed in with only 5 
data points sampled 
at random

Corner

ß Squared Loss is slightly 
to the right

Absolute and Huber Loss
have nearly identical 

Values
à

D
iff

er
en

t M
in

im
ize

rs

15.6 16.0
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Sensitivity to Outliers

Small fraction of
loss on outliers…

34% of loss due 
to a single point 

Recap on Loss Functions

Ø Loss functions: a mechanism to measure how well a 
particular instance of a model fits a given dataset

Ø Squared Loss: sensitive to outliers but a smooth function

Ø Absolute Loss: less sensitive to outliers but not smooth

Ø Huber Loss: less sensitive to outliers and smooth but has 
an extra parameter to deal with

Ø Why is smoothness an issue à Optimization! …

Summary of Model Estimation (so far…)
1. Define the Model: simplified representation of the world

Ø Use domain knowledge but … keep it simple!
Ø Introduce parameters for the unknown quantities

2. Define the Loss Function: measures how well a particular instance 
of the model “fits” the data
Ø We introduced L2, L1, and Huber losses for each record
Ø Take the average loss over the entire dataset

3. Minimize the Loss Function: find the parameter values that 
minimize the loss on the data
Ø So far we have done this graphically 
Ø Now we will minimize the loss analytically 

Step 3: Minimize the Loss

A Brief Review of Calculus

Minimizing a Function
Ø Suppose we want to minimize:

Ø Solve for derivative = 0:

Ø Procedure: 
1. take derivative
2. Set equal to zero
3. Solve for parameters

f(✓) = (✓ � 3)2

@

@✓
f(✓) = 2(✓ � 3) = 0
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Quick Review of the Chain Rule 

Ø How do I compute the derivative of composed functions?

@

@✓
h(✓) =

@

@✓
f (g(✓))

=

✓
@

@u
f(u)

���
u=g(✓)

◆
@

@✓
g(✓)

Derivative of f
evaluated 

at g(θ)

Derivative 
of g(θ)

Bonus material (not covered in lecture) but useful for studying

Using the 
Chain Rule

@

@✓
exp

�
sin

�
✓2
��

=

✓
@

@u
exp (u)

���
u=sin(✓2)

◆
@

@✓
sin

�
✓2
�

=

✓
exp(u)

���
u=sin(✓2)

◆
@

@✓
sin

�
✓2
�

= exp

�
sin

�
✓2
�� @

@✓
sin

�
✓2
�

= exp

�
sin

�
✓2
��✓ @

@u
sin(u)

���
u=✓2

◆
@

@✓
✓2

= exp

�
sin

�
✓2
�� ⇣

cos(u)
���
u=✓2

⌘ @

@✓
✓2

= exp

�
sin

�
✓2
��

cos

�
✓2
� @

@✓
✓2

= exp

�
sin

�
✓2
��

cos

�
✓2
�
2✓

First application of chain rule

Derivative of exponent

Substituting u

Second application of the chain rule

Derivative of sine function

Computing the remaining derivative

Bonus material (not covered in lecture) but useful for studying

f(✓) = (✓ � 3)2 f(✓) = (✓ � 3)3f(✓) = �(✓ � 3)2

All of the above functions have zero derivatives at θ = 3 
è is θ=3 minimizer for all the above functions?

No!
Need to check second derivative is positive…

@

@✓
f(✓) = 2(✓ � 3)

@

@✓
f(✓) = �2(✓ � 3)

@

@✓
f(✓) = 3(✓ � 3)2

@

@✓
f(✓) = 2(✓ � 3)

@

@✓
f(✓) = �2(✓ � 3)

@

@✓
f(✓) = 3(✓ � 3)2

Generally we are interested in convex functions with
respect to the parameters θ.

@2

@✓2
f(✓) = 2

@2

@✓2
f(✓) = �2

@2

@✓2
f(✓) = 6(✓ � 3)

at θ = 3

Convex sets and polygons

Ø No line segment between any two 
points on the boundary ever leaves 
the polygon.

Ø Equivalently, all angles are ≤ 180º.

Ø The interior is a convex set.

Non-Convex sets and polygons
Ø There is at least one line 

segment between two points 
on the boundary that leaves 
the set.
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Formal Definition of Convex Functions

Ø A function f is convex if and only if:

tf(a) + (1� t)f(b) � f (ta+ (1� t)b)

8a, 8b, t 2 [0, 1]

Convex

Epigraph

Nonconvex

Epigraph

All possible orange lines are:
• always in epigraph or on black line
• always above or equal to black line

Curve 1 Curve 2

Curve 3
Curve 4

http://bit.ly/ds100-sp18-cvx

Convex or 
Not Convex

Are our previous loss functions convex?

Yes!

Average Loss?
Yes!

(Sum of convex 
functions is convex)

Is a Gaussian convex?

Sum of Convex Functions is Convex
Ø In class professor Gonzalez was asked: “Are you sure that 

the sum of convex functions is convex?”
Ø The answer is yes! Always! 

Ø Professor Gonzalez should have had a proof ready! L It’s Easy! 

Ø Proposed counter examples … (not entirely obvious)

Bonus material (not covered in lecture) but useful for studying

Formal Proof
Ø Suppose you have two convex functions f and g:

tf(a) + (1� t)f(b) � f (ta� (1� t)a)

tg(a) + (1� t)g(b) � g (ta� (1� t)a)

8a, 8b, t 2 [0, 1]

Ø We would like to show:

Ø Where: 

th(a) + (1� t)h(b) � h (ta� (1� t)a)

h(x) = f(x) + g(x)

Bonus material (not covered in lecture) but useful for studying
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th(a) + (1� t)h(b) � h (ta� (1� t)a)

h(x) = f(x) + g(x)

Ø Starting on the left side

th(a) + (1� t)h(b) = t (f(a) + g(a)) + (1� t) (f(b) + g(b))

= [tf(a) + (1� t)f(b)] + [tg(a) + (1� t)g(b)]

Substituting definition of h:

Re-arranging terms:

� f (ta+ (1� t)b) + [tg(a) + (1� t)g(b)]Convexity in f

� f (ta+ (1� t)b) + g (ta+ (1� t)b)Convexity in g

= h (ta+ (1� t)b)Definition of h

Ø We would like to show:

Ø Where: 

Bonus material (not covered in lecture) but useful for studying

Minimizing the 
Average Squared Loss

Minimizing the Average Squared Loss

Ø Take the derivative
= � 2

n

nX

i=1

(yi � ✓)

LD(✓) =
1

n

nX

i=1

(yi � ✓)2
@

@✓
LD(✓) =

1

n

nX

i=1

@

@✓
(yi � ✓)2

Minimizing the Average Squared Loss

Ø Take the derivative

Ø Set the derivative 
equal to zero

0 = � 2

n

nX

i=1

(yi � ✓)

= � 2

n

nX

i=1

(yi � ✓)

LD(✓) =
1

n

nX

i=1

(yi � ✓)2
@

@✓
LD(✓) =

1

n

nX

i=1

@

@✓
(yi � ✓)2

Minimizing the Average Squared Loss

Ø Take the derivative

Ø Set the derivative 
equal to zero

Ø Solve for parameters

✓̂ =
1

n

nX

i=1

yi

Hat
(Estimator)

0 = � 2

n

nX

i=1

(yi � ✓)

0 =
nX

i=1

(yi � ✓)

0 =

 
nX

i=1

yi

!
�
 

nX

i=1

✓

!

0 =

 
nX

i=1

yi

!
� n✓

Minimizing the Average Squared Loss

✓̂ =
1

n

nX

i=1

yi

Hat
(Estimator)

Ø The estimate for percent tip that minimizes the squared 
loss is the mean (average) of the percent tips
Ø We guessed that already!

Mean 
(Average)!
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Minimizing the Average Absolute Loss

Ø Take the derivative
Ø How?

What is sign(0) ? 

LD(✓) =
1

n

nX

i=1

|yi � ✓| @

@✓
LD(✓) =

1

n

nX

i=1

@

@✓
|yi � ✓|

@

@✓
LD(✓) = � 1

n

nX

i=1

sign(yi � ✓)

Minimizing the Average Absolute Loss

Ø Take the derivative
Ø How?

Ø Derivative at the corner?
Ø What is the sign of 0?

Ø Convention:

sign(0) = 0

@

@✓
LD(✓) = � 1

n

nX

i=1

sign(yi � ✓)

Minimizing the Average Absolute Loss

Ø Take the derivative

Ø Set derivative to
zero and solve for 
parameters

0 =

0

@
nX

yi<✓

�1

1

A+

0

@
X

yi>✓

+1

1

A

= � 1

n

0

@
nX

yi<✓

�1 +
X

yi>✓

+1

1

A

0

@
nX

yi<✓

1

1

A =

0

@
X

yi>✓

1

1

A

@

@✓
LD(✓) = � 1

n

nX

i=1

sign(yi � ✓)

Minimizing the Average Absolute Loss
Ø Take the derivative

Ø Set derivative to zero and 
solve for parameters

0

@
nX

yi<✓

1

1

A =

0

@
X

yi>✓

1

1

A

y1 y2 y3 y4 y5

Percent Tips in 
sorted order

θ2 2

y1 y2 y3 y4

Percent Tips in 
sorted order

θ2 2?

Median!

Lo
ss

Absolute Loss Even and Odd Data
Odd PointsEven Points

Many optimal values

The median minimizes the absolute loss à Robust!

θ θ θ
Pick one?

not sensitive to outliers

Lo
ss

Calculus for Loss Minimization

Ø General Procedure:
Ø Verify that function is convex (we often will assume this…)
Ø Compute the derivative 
Ø Set derivative equal to zero and solve for the parameters

Ø Using this procedure we discovered:

✓̂L2 =
1

n

nX

I=1

yi = mean(D) ✓̂L1 = median(D)

✓̂Huber =?
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@

@✓
LD(✓) =

1

n

nX

i=1

(
� (yi � ✓) |yi � ✓| < ↵

�↵ sign(yi � ✓) otherwise

Minimizing the Average Huber Loss

Ø Take the derivative of the average Huber Loss

L↵ (✓, y) =

(
1
2 (y � ✓)2 |y � ✓| < ↵

↵
�
|y � ✓|� ↵

2

�
otherwise

Minimizing the Average Huber Loss

Ø Take the derivative of the average Huber Loss

L↵ (✓, y) =

(
1
2 (y � ✓)2 |y � ✓| < ↵

↵
�
|y � ✓|� ↵

2

�
otherwise

@

@✓
LD(✓) =

1

n

nX

i=1

(
� (yi � ✓) |yi � ✓| < ↵

�↵ sign(yi � ✓) otherwise

Minimizing the Average Huber Loss

Ø Take the derivative of the average Huber Loss

L↵ (✓, y) =

(
1
2 (y � ✓)2 |y � ✓| < ↵

↵
�
|y � ✓|� ↵

2

�
otherwise

@

@✓
LD(✓) =

1

n

nX

i=1

(
� (yi � ✓) |yi � ✓| < ↵

�↵ sign(yi � ✓) otherwise

Minimizing the Average Huber Loss

Ø Take the derivative of the average Huber Loss

L↵ (✓, y) =

(
1
2 (y � ✓)2 |y � ✓| < ↵

↵
�
|y � ✓|� ↵

2

�
otherwise

@

@✓
LD(✓) =

1

n

nX

i=1

(
� (yi � ✓) |yi � ✓| < ↵

�↵ sign(yi � ✓) otherwise

Ø Set derivative equal to zero:

Ø Take the derivative of the average Huber Loss

0

@
X

✓�yi+↵

↵

1

A�

0

@
X

✓yi�↵

↵

1

A�

0

@
X

|yi�✓|<↵

(yi � ✓)

1

A = 0

Ø Solution?

Ø No simple analytic solution …
Ø We can still plot the derivative

@

@✓
LD(✓) =

1

n

nX

i=1

(
� (yi � ✓) |yi � ✓| < ↵

�↵ sign(yi � ✓) otherwise

Visualizing the Derivative of the Huber Loss
Alpha = 10

Ø Large 𝜶è unique optimum
like squared loss

L↵ (✓, y) =

(
1
2 (y � ✓)2 |y � ✓| < ↵

↵
�
|y � ✓|� ↵

2

�
otherwise
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Visualizing the Derivative of the Huber Loss

Many optimal values
θ θ θLo

ss

Alpha = 1 Alpha = 10

Ø Derivative is continuous 
Ø Small 𝜶èmany optima 

Ø Large 𝜶è unique optimum
like squared loss

Numerical Optimization

Minimizing the 
Huber Loss 

Numerically
Often we will use 
numerical optimization 
methods

The following are helpful 
properties when using 
numerical optimization 
methods:

Ø convex loss function

Ø smooth loss function

Ø analytic derivative

Summary of Model Estimation
1. Define the Model: simplified representation of the world

Ø Use domain knowledge but … keep it simple!
Ø Introduce parameters for the unknown quantities

2. Define the Loss Function: measures how well a particular instance 
of the model “fits” the data
Ø We introduced L2, L1, and Huber losses for each record
Ø Take the average loss over the entire dataset

3. Minimize the Loss Function: find the parameter values that 
minimize the loss on the data
Ø We did this graphically 
Ø Minimize the loss analytically using calculus
Ø Minimize the loss numerically

Improving the Model

Going beyond the simple model

Ø How could we improve upon this model?

Ø Things to consider when improving the model
Ø Related factors to the quantity of interest

Ø Examples: quality of service, table size, time of day, total bill
Ø Do we have data for these factors?

Ø The form of the relationship to the quantity of interest
Ø Linear relationships, step functions, etc …

Ø Goals for improving the model
Ø Improve prediction accuracy à more complex models 
Ø Provide understanding à simpler models 

Ø Is my model “identifiable” (is it possible to estimate the parameters?)
Ø percent tip = θ1* + θ2* ß many identical parameterizations

percentage tip = ✓⇤
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percentage tip = ✓⇤1 + ✓⇤2 ⇤ total bill

Rationale: 
Larger bills result in larger
tips and people tend to
to be more careful 
or stingy on big tips.

Parameter Interpretation:
Ø θ1: Base tip percentage
Ø θ2: Reduction/increase

in tip for an increase in 
total bill.

Often visualization can guide in 
the model design process.

Estimating the model parameters:

Ø Write the loss (e.g., average squared loss) 

percentage tip = ✓⇤1 + ✓⇤2 ⇤ total bill

LD(✓1, ✓2) =
1

n

nX

i=1

(yi � (✓1 + ✓2xi))
2

Total Bill
n

% Tip

Ø Write the loss (e.g., average squared loss) 

Ø Take the derivative(s):

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))

=
1

n

nX

i=1

@

@✓1
(yi � (✓1 + ✓2xi))

2

LD(✓1, ✓2) =
1

n

nX

i=1

(yi � (✓1 + ✓2xi))
2

@

@✓1
LD(✓1, ✓2)

Ø Write the loss (e.g., average squared loss) 

Ø Take the derivative(s):

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))
@

@✓2
✓2xi

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))xi

LD(✓1, ✓2) =
1

n

nX

i=1

(yi � (✓1 + ✓2xi))
2

@

@✓1
LD(✓1, ✓2)

@

@✓2
LD(✓1, ✓2)

Ø Write the loss (e.g., average squared loss) 

Ø Take the derivative(s):

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))xi

Ø Set derivatives equal to zero and solve for parameters

LD(✓1, ✓2) =
1

n

nX

i=1

(yi � (✓1 + ✓2xi))
2

@

@✓1
LD(✓1, ✓2)

@

@✓2
LD(✓1, ✓2)

Solving for θ1

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))0

nX

i=1

yi = n✓1 + ✓2

nX

i=1

xi

= � 2

n

  
nX

i=1

yi

!
� n✓1 � ✓2

nX

i=1

xi

!

Breaking apart the sum

Rearranging 
Terms
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Solving for θ1
nX

i=1

yi = n✓1 + ✓2

nX

i=1

xi
1

n

nX

i=1

yi = ✓1 + ✓2
1

n

nX

i=1

xi

Divide
by
n

ȳ :=
1

n

nX

i=1

yi

Ø Define the average of x and y:

x̄ :=
1

n

nX

i=1

xi

✓1 = ȳ � ✓2x̄

ȳ = ✓1 + ✓2x̄

Solving for θ2

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))xi

= � 2

n

nX

i=1

�
yixi � ✓1xi � ✓2x

2
i

�

Distributing the xi term

Breaking apart the sum

= � 2

n

  
nX

i=1

yixi

!
�
 
✓1

nX

i=1

xi

!
� ✓2

nX

i=1

x

2
i

!

Scratch
✓1 = ȳ � ✓2x̄

@

@✓2
LD(✓1, ✓2)

Solving for θ2

0 = � 2

n

  
nX

i=1

yixi

!
�
 
✓1

nX

i=1

xi

!
� ✓2

nX

i=1

x

2
i

!

nX

i=1

yixi = ✓1

nX

i=1

xi + ✓2

nX

i=1

x

2
i

Rearranging 
Terms

Scratch
✓1 = ȳ � ✓2x̄

Divide by n 1

n

nX

i=1

yixi = ✓1
1

n

nX

i=1

xi + ✓2
1

n

nX

i=1

x

2
i

Solving for θ2

Scratch
✓1 = ȳ � ✓2x̄

1

n

nX

i=1

yixi = ✓1
1

n

nX

i=1

xi + ✓2
1

n

nX

i=1

x

2
i

xy :=
1

n

nX

i=1

xiyi

x :=
1

n

nX

i=1

xi

x

2 :=
1

n

nX

i=1

x

2
i

xy = ✓1x̄+ ✓2x
2

System of 
Linear Equations

✓1 = ȳ � ✓2x̄

xy = ✓1x̄+ ✓2x
2

xy = (ȳ � ✓2x̄) x̄+ ✓2x
2

= ȳx̄� ✓2x̄
2 + ✓2x

2

= ȳx̄+ ✓2

⇣
x

2 � x̄

2
⌘

✓2 =
xy � ȳx̄

x

2 � x̄

2
=

1
n

Pn
i=1 (xi � x̄) (yi � ȳ)
1
n

Pn
I=1 (xi � x̄)2

Ø Substituting θ1 and solving for θ2

solving for θ2

Algebra…

Denominator 
Derivation

Ø Completing the squares:

nX

i=1

�
x

2
i � x̄xi

�
=

nX

i=1

�
x

2
i � x̄xi + x̄

2 � x̄xi � x̄

2 + x̄xi

�

=
nX

i=1

�
x

2
i � 2x̄xi + x̄

2 � x̄

2 + x̄xi

�

=
nX

i=1

⇣
(xi � x̄)2 � x̄

2 + x̄xi

⌘

=
nX

i=1

(xi � x̄)2 � nx̄

2 + x̄

nX

i=1

xi

=
nX

i=1

(xi � x̄)2 � nx̄

2 + x̄nx̄

=
nX

i=1

(xi � x̄)2

Skipped in Class
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Numerator
Derivation

Ø Completing the squares:
nX

i=1

(yixi � ȳx̄) =
nX

i=1

((yixi + ȳx̄� yix̄� ȳxi) + yix̄+ ȳxi � 2ȳx̄)

=
nX

i=1

((yi � ȳ) (xi � x̄) + yix̄+ ȳxi � 2ȳx̄)

=
nX

i=1

(yi � ȳ) (xi � x̄) +
nX

i=1

(yix̄+ ȳxi � 2ȳx̄)

=
nX

i=1

(yi � ȳ) (xi � x̄) + nȳx̄+ ȳnx̄� 2nȳx̄

=
nX

i=1

(yi � ȳ) (xi � x̄)

Skipped in Class

Summary so far …

Ø Step 2: Write the loss (we selected an average squared loss) 

percentage tip = ✓⇤1 + ✓⇤2 ⇤ total bill

LD(✓1, ✓2) =
1

n

nX

i=1

(yi � (✓1 + ✓2xi))
2

Ø Step 1: Define the model with unknown parameters

Ø Step3: Minimize the loss
Ø Analytically (using calculus)
Ø Numerically (using optimization algorithms)

LD(✓1, ✓2) =
1

n

nX

i=1

(yi � (✓1 + ✓2xi))
2

Ø Step3: Minimize the loss
Ø Analytically (using calculus)
Ø Numerically (using optimization algorithms)

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))

= � 2

n

nX

i=1

(yi � (✓1 + ✓2xi))xi

@

@✓1
LD(✓1, ✓2)

@

@✓2
LD(✓1, ✓2)

Ø Set derivatives equal to zero and solve for parameter values

✓1 = ȳ � ✓2x̄

✓2 =
xy � ȳx̄

x

2 � x̄

2
=

1
n

Pn
i=1 (xi � x̄) (yi � ȳ)
1
n

Pn
I=1 (xi � x̄)2

Ø Is this a local minimum?

@

2

@✓

2
1

LD(✓1, ✓2) = � 2

n

nX

i=1

@

@✓1
(yi � (✓1 + ✓2xi)) = � 2

n

nX

i=1

�1 = 2

=
2

n

nX

i=1

x

2
i > 0

@

2

@✓

2
2

LD(✓1, ✓2) = � 2

n

nX

i=1

@

@✓2
(yi � (✓1 + ✓2xi))

Visualizing the Higher Dimensional Loss

Ø What does the loss look like?

Ø Go to notebook …

“Improving” the Model 
(more…)
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percentage tip = ✓⇤1 + ✓⇤2 ⇤ is Male

+ ✓⇤3 ⇤ is Smoker+ ✓⇤4 ⇤ table size

Difficult 
to 

Plot

Rational: 
Each term encodes a potential factor that could 
affect the percentage tip.

Possible Parameter Interpretation:
Ø θ1: base tip percentage paid by female non-

smokers without accounting for table size.
Ø θ2: tip change associated with male patrons ...

Maybe difficult to estimate … what if all smokers 
are male?

Go to Notebook

Define the model

Ø Use python to define the function

Define and Minimize the Loss Define and Minimize the Loss

Function is not smooth à Difficult to optimizeWhy?

Define and Minimize the Loss


