
2/19/18

1

Data 100
Lecture 9:
Scraping Web Technologies

Slides by:

Joseph E. Gonzalez, Deb Nolan

deborah_nolan@berkeley.edu

hellerstein@berkeley.edu

? Last Week …

Visualization

Ø Tools and Technologies
Ø Maplotlib and seaborn

Ø Concepts
Ø Length, color, and faceting

Ø Kinds of visualizations
Ø Bar plots, histograms, rug plots, box plots, violin plot,

scatter plots, and kernel density estimators

Ø Good vs bad visualizations

Ø Smoothing …

Kernel Density Estimates
and Smoothing

Kernel Density Estimators

Ø Inferential statistics – estimate properties of the population
Ø Draw conclusions beyond the data…

Descriptive Plot Inferential Plot

Kernel Density Estimators

Ø Inferential statistics – estimate properties of the population
Ø Draw conclusions beyond the data…

Inferential Plot

Probability of
90 < x < 93?

A
re

a

= Area under
the curve

No Data!

Suppose this data
was constructed by
a random sample of
student grades?

What is the
probability that the
next student’s grade
will be between 90
and 93?

mailto:jegonzal@cs.berkeley.edu
mailto:jegonzal@cs.berkeley.edu

2/19/18

2

Constructing KDEs
Ø Non-parametric Model

Ø size/complexity of the model
depends on the data:

Inferential Plot

p̂(x) =
1

n

nX

i=1

K↵(x� xi)

K↵(r) =
1p
2⇡↵2

exp

✓
� r2

2↵2

◆
Gaussian Kernel: (Commonly used à Very smooth):

DataQuery

depends on the data:

Inferential Plot

p̂(x) =
1

n

nX

i=1

K↵(x� xi)

Gaussian Kernel: (Commonly used à Very smooth):

K↵(r) =
1p
2⇡↵2

exp

✓
� r2

2↵2

◆

depends on the data:

Inferential Plot

p̂(x) =
1

n

nX

i=1

K↵(x� xi)

Gaussian Kernel: (Commonly used à Very smooth)):

K↵(r) =
1p
2⇡↵2

exp

✓
� r2

2↵2

◆

How do you pick the kernel
and bandwidth?

Ø Goal: fit unseen data

Ø Idea: Cross Validation
Ø Hide some data
Ø Draw the curve
Ø Check if curve “fits” hidden

data … more on this later

↵ = 0.01 ↵ = 0.05

↵ = 0.1 ↵ = 1.0

Smoothing a Scatter Plot

Descriptive Plot Inferential Plot

Set opacity (alpha) on markers

Kernel Smoothed Fit

Smoothing a Scatter Plot
Ø Weighted combination

of all y valuesInferential Plot

Set opacity (alpha) on markers

Kernel Smoothed Fit

ŷ(x) =
1Pn

i=1 wi(x)

nX

i=1

wi(x)yi

wi(x) = K↵(x� xi)

2/19/18

3

Dealing with Big Data (Smoothly)
Ø Big n (many rows)

Ø Aggregation & Smoothing – compute summaries over groups/regions
Ø Sliding windows, kernel density smoothing

Ø Set transparency or use contour plots to avoid over-plotting

Ø Big p (many columns)
Ø Faceting – Using additional columns to

Ø Adjust shape, size, color of plot elements
Ø Breaking data down by auxiliary dimensions (e.g., age, gender, region …)

Ø Create new hybrid columns that summarize multiple columns
Ø Example: total sources of revenue instead of revenue by product

What’s Next …

This Week
Ø Today (Tuesday)

Ø Web technologies -- getting data from the web
Ø Pandas on the Web
Ø JSON, XML, and HTML
Ø HTTP – Get and Post
Ø REST APIs, Scraping

Ø Thursday
Ø Both Fernando and I are out à guest lecturer Sam Lau!!
Ø String processing

Ø Python String Library
Ø Regular Expressions
Ø Pandas String Manipulation

Getting Data from the Web
Starting Simple with Pandas

Pandas read_html

Ø Loads tables from web pages
Ø Looks for <table></table>
Ø Table needs to be well formatted
Ø Returns a list of DataFrames

Ø Can load directly from URL
Ø Careful! Data changes. Save a copy with your analysis

Ø You will often need to do additional transformations to
prepare the data

Ø Demo!

HTTP – Hypertext Transfer Protocol

2/19/18

4

HTTP
Hypertext Transfer Protocol

Ø Created at CERN by Tim Berners-Lee in 1989 as part of
the World Wide Web

Ø Started as a simple request-response protocol used by
web servers and browsers to access hypertext

Ø Widely used exchange data and provides services:
Ø Access webpage & submit forms
Ø Common API to data and services across the internet

Ø Foundation of modern REST APIs … (more on this soon)

Request – Response Protocol

Swipe

Request

GET /sp18/syllabus.html?a=1 HTTP/1.1
HOST: ds100.org
User-Agent: python-requests/2.18.4
Accept-Encoding: compress, gzip
Accept: */*

H
ea

d
er

Client Server

First line contains:
GET /sp18/syllabus.html?a=1 HTTP/1.1
Ø a method, e.g., GET or POST
Ø a URL or path to the document
Ø the protocol and its version

Remaining Header Lines
Ø Key–value pairs
Ø Specify a range of attributes

Optional Body
Ø send extra parameters & data

Request – Response Protocol

Swipe

Request
Client Server

HTTP/1.1 200 OK
Server: GitHub.com
Date: Mon, 12 Feb 2018 05:41:55 GMT
Last-Modified: Mon, 22 Jan 2018 06:16:48 GMT
Access-Control-Allow-Origin: *
Content-Type: text/html; charset=utf-8
Content-Encoding: gzip

H
e

a
d

e
r

<!DOCTYPE html><html lang="en"> <head> <meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>DS100</title><meta name="author" content="UC Berkeley"> <meta
name="viewport" content="width=device-width, initial-scale=1.0">
<link href="/assets/themes/bootstrap/css/bootstrap.min.css"> …

Bo
d

y

Response

Ø First line contains status
code

Ø Key-Value Pair Lines
Ø Data properties

Ø Body
Ø Returned data
Ø HTML/JSON/Bytes

In a Web Browser

Request

Response

Request Types (Main Types)
Ø GET – get information

Ø Parameters passed in URI (limited to ~2000 characters)
Ø /app/user_info.json?username=mejoeyg&version=now
Ø Request body is typically ignored

Ø Should not have side-effects (e.g., update user info)
Ø Can be cached in on server, network, or in browser (bookmarks)
Ø Related requests: HEAD, OPTIONS

Ø POST – send information
Ø Parameters passed in URI and BODY
Ø May and typically will have side-effects
Ø Often used with web forms.
Ø Related requests: PUT, DELETE

Response Status Codes
Ø 100s Informational – Communication continuing, more input

expected from client or server

Ø 200 Success - e.g., 200 - general success;

Ø 300s Redirection or Conditional Action – requested URL is
located somewhere else.

Ø 400s Client Error
Ø 404 indicates the document was not found
Ø 403 indicates that the server understood the request but refuses to

authorize it

Ø 500s Internal Server Error or Broken Request – error on the
server side

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

2/19/18

5

HTML, XML, and JSON
data formats of the web

HTML/XML/JSON

Ø Most services will exchange data in HTML, XML, or JSON

Ø Why?
Ø Descriptive

Ø Can maintain meta-data
Ø Extensible

Ø Organization can change and maintain compatibility
Ø Human readable

Ø Useful for debugging and provides a common interface
Ø Machine readable

Ø A wide range of technologies for parsing

JSON: JavaScript Object Notation
Ø Recursive datatype

Ø Data inside of data

Ø Value is a:
Ø A basic type:

Ø String
Ø Number
Ø true/false
Ø Null

Ø Array of Values
Ø A dictionary of
key:Value pairs

Ø Demo Notebook

“Key”: Value

[Array]

Object

Basic Type (String)

XML and HTML
eXtensible Markup Language

XML is a standard
for semantic,
hierarchical
representation of
data

Syntax : Element / Node

The basic unit of XML code is called an
“element” or “node”
Each Node has a start tag and end tag

<zone>4</zone>

Start tag End tag

Content

2/19/18

6

Syntax : Nesting
A node may contain other nodes (children) in
addition to plain text content.

<plant>

<zone>4</zone>

<light>Mostly Shady</light>

</plant>

Start tag

End tag

Content consists of
two nodes

Indentation is not
needed. It simply
shows the nesting

Syntax : Empty Nodes
Nodes may be empty

<plant>

<zone></zone>

<light/>

</plant>

These two nodes
are empty
Both formats are
acceptable

Syntax : Attributes
Nodes may have attributes (and attribute values)

<plant id='a'>

<zone></zone>

<light source="2" class="new"/>

</plant>

The attribute named type
has a value of “a”

This empty node
has two attributes:
source and class

Syntax : Comments
Comments can appear anywhere

<plant>

<!–- elem with content -->

<zone>4 <!–- a second comment --></zone>

<light>Mostly Shady</light>

</plant>

Two comments

Well-formed XML
Ø An element must have both an open and closing tag.

However, if it is empty, then it can be of the form
<tagname/>.

Ø Tags must be properly nested:
Ø Bad!: <plant><kind></plant></kind>

Ø Tag names are case-sensitive

Ø No spaces are allowed between < and tag name.

Ø Tag names must begin with a letter and contain only
alphanumeric characters.

Well-formed XML:

Ø All attributes must appear in quotes in:

name = "value"

Ø Isolated markup characters must be specified via entity
references. < is specified by < and > is specified by
>.

Ø All XML documents must have one root node that
contains all the other nodes.

2/19/18

7

xHTML: Extensible Hypertext Markup Language

Ø HTML is an XML-”like” structure à Pre-dated XML
Ø HTML is often not well-formed, which makes it difficult to parse

and locate content,
Ø Special parsers “fix” the HTML to make it well-formed

Ø Results in even worse HTML

Ø xHTML was introduced to bridge HTML and XML
Ø Adopted by many webpages
Ø Can be easily parsed and queried by XML tools

Example of well formed xHTML

DOM: Document Object Model

Ø Treat XML and HTML as a Tree
Ø Fits XML and well formed HTML

Ø Visual containment à children

Ø Manipulated dynamically using
JavaScript
Ø HTML DOM and actual DOM the

browser shows may differ
(substantially)

Ø Parsing in Python à Selenium +
Headless Chrome … (out of scope)

Tree terminology

Ø There is only one root (AKA document node) in the tree,
and all other nodes are contained within it.

Ø We think of these other nodes as descendants of the
root node.

Ø We use the language of a family tree to refer to
relationships between nodes.

Ø parents, children, siblings, ancestors, descendants

Ø The terminal nodes in a tree are also known as leaf
nodes. Content always falls in a leaf node.

HTML trees: a few additional “rules”

Ø Typically organized around <div> </div> elements

Ø Hyperlinks: Link Text
Ø The id attribute: unique key to identify an HTML node

Ø Poorly written HTML à not always unique

Ø Older web forms will contain forms:
<form action="/submit_comment.php" method="post">

<input type="text" name="comment" value="blank" />
<input type="submit" value="Submit" />

</form>

See notebook for demo on working with forms …

FileA.json

FileB.json

fileC.xml

fileD.xml

Which files are broken?

http://bit.ly/ds100-sp18-xml

http://bit.ly/ds100-sp18-xml

2/19/18

8

Next lecture Regex
Staring Sam Lau

We will finish REST and HTTP on Tuesday

