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Ordinary Least Squares
Multiple Linear Regression Model:  with
design matrix , response
vector , and predicted
vector . If there
are  features plus

a
bias/intercept, then the vector of parameters . The vector of estimates  is obtained from fitting the

model to the sample .

Concept Formula Concept Formula
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Ridge Regression

L2 Regularization
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L1 Norm of 

Scikit-Learn
Suppose sklearn.model_selection and
sklearn.linear_model are both imported packages.

Package Function(s) Description

sklearn.linear_model LinearRegression(fit_intercept=True) Returns an ordinary least squares Linear Regression model.

LassoCV(fit_intercept=True),

RidgeCV(fit_intercept=True)

Returns a Lasso (L1 Regularization) or Ridge (L2 regularization)
linear

model, respectively, and picks the best model by cross
validation.

model.fit(X, y) Fits the scikit-learn model to the provided
X and y.

model.predict(X) Returns predictions for the X passed in according to the fitted
model.

model.coef_ Estimated coefficients for the linear model, not including the
intercept term.

model.intercept_ Bias/intercept term of the linear model. Set to 0.0 if
fit_intercept=False.

sklearn.model_selection train_test_split(*arrays,

test_size=0.2)

Returns two random subsets of each array passed in, with 0.8 of the
array

in the first subset and 0.2 in the second subset.

Probability
Let  have a discrete
probability distribution .
  has expectation  over
all possible values ,

variance
 , and standard deviation .

The covariance of two random variables  and  is . If  and
  are independent, then .

Notes Property of Expectation Property of Variance

 is a random variable.

 is a random variable.  are

scalars.

 are random variables.

 is a Bernoulli random
variable that

takes on value 1 with probability 

and 0 otherwise.

 is a Binomial random variable

representing the number of ones in 

independent Bernoulli trials with

probability  of 1.
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Central Limit Theorem

Let  be a
sample of independent and identically distributed random variables drawn
from a population with mean  and

standard deviation . The
sample mean  is normally distributed, where  and
 .

Parameter Estimation

Suppose for each individual with fixed input , we observe a random response , where  is the true relationship and  is

random noise with zero mean
and variance .

For a new individual with fixed input , define our random prediction  based on a model fit to our
observed sample . The

model risk is the mean squared prediction
error between  and :

Suppose that input  has  features and the true relationship
  is linear with parameter . Then 

 and  for an estimate  fit to the observed sample
 .

Gradient Descent

Let  be an objective function to minimize over , with some optimal . Suppose  is some starting estimate at
 , and 

 is the estimate at step
 . Then for a learning rate , the gradient update step to
compute  is

where  is the partial derivative/gradient of
  with respect to , evaluated at .
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SQLite syntax:

SELECT [DISTINCT]

    {* | expr [[AS] c_alias]

    {,expr [[AS] c_alias] ...}}

FROM tableref {, tableref}

[[INNER | LEFT ] JOIN table_name
    ON qualification_list]

[WHERE search_condition]

[GROUP BY colname {,colname...}]
[HAVING search_condition]

[ORDER BY column_list]

[LIMIT number]

[OFFSET number of rows];

Syntax Description

SELECT
column_expression_list

List is comma-separated. Column expressions may include

aggregation
functions (MAX, FIRST, COUNT,
etc). AS renames

columns. DISTINCT selects
only unique rows.

FROM s INNER JOIN t ON cond Inner join tables s and t using
cond to filter rows; the INNER
keyword is
optional.

FROM s LEFT JOIN t ON cond Left outer join of tables s and t using
cond to filter rows.

FROM s, t Cross join of tables s and t: all pairs of
a row from s and a row

from t

WHERE a IN cons_list Select rows for which the value in column a is among
the values

in a cons_list.

ORDER BY RANDOM LIMIT n Draw a simple random sample of n rows.

ORDER BY a, b DESC Order by column a (ascending by default) , then
b (descending).

CASE WHEN pred THEN cons
ELSE alt END

Evaluates to cons if pred is true and
alt otherwise. Multiple

WHEN/THEN
pairs can be included, and ELSE is optional.

WHERE s.a LIKE 'p' Matches each entry in the column a of table
s to the text

pattern p. The wildcard
% matches at least zero characters.

LIMIT number Keep only the first number rows in the return
result.

OFFSET number Skip the first number rows in the return result.


