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How often do you use GenAI 

(e.g., Gemini, ChatGPT, Claude)

Please download and install the 
Slido app on all computers you 
use

ⓘ Start presenting to display the poll results on this slide.



Which GenAI technologies 

have you used

Please download and install the 
Slido app on all computers you 
use

ⓘ Start presenting to display the poll results on this slide.



What is Chat GPT?

Chat: natural language system

 G: Generatively – Designed to model the creation of text 

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Chat GPT is just one example of a

Large Language Model (LLM)

Explained
Today



What is a 

Large Language Model (LLM)?

➢ Large: The model parameters (θ) are BIG!
➢ BILLIONS of PARAMETERS!!!!

Reconciling modern machine learning practice and the bias-variance trade-off

Deep Double Descent: Where Bigger Models and More Data Hurt

https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1912.02292


What is a 

Large Language Model (LLM)?

➢ Large: The model parameters (θ) are BIG!
➢ BILLIONS of PARAMETERS!!!!

➢ Language Model: predicting language (e.g., words)

The capital of California is ____________________Sacramento
San Francisco (1862)
Benicia (1853)
Vallejo (1852)



Tell a short story about a 
fairy princess named Alice.

Once upon a time there was 

a fairy princess named Alice.



Predicting the Next Word is Knowledge

Predicting the next word allows you to:

➢ Answer questions 

➢ Tell stories 

➢ Accomplish tasks

Generative AI

How do we model the next word?

The capital of California is ____________________Sacramento
San Francisco (1862)
Benicia (1853)
Vallejo (1852)



Modeling Tokens not Words

➢ Tokens represent words, word parts, and special characters

➢ Constructed based on frequency of char. sequences 

➢ Allows for new words, misspelling, and numbers

➢ Vocabulary Sizes: Llama-2: 32K → Llama-3: 128K tokens

“The smallest tokenizer!” → 

              [“The”, “ small”, “est”, “ token”, “izer”, “!”]Tokens:



Causal Language Modeling

➢ Conditioned on the context

➢ Model probability of next token
➢ Sample or pick most likely

The best class at UC Berkeley is __________

Pr( “Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

“Data-100”

“Data-8”
“CS”

“a”
“ “

<stop>

Probability
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Causal Language Modeling

➢ Conditioned on the context

➢ Model probability of next token
➢ Sample or pick most likely

The best class at UC Berkeley is __________

Pr( “Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

How do we go from 
predicting a single token to 

writing an essay?

One token at a time!



Auto Regressive Decoding

1. Compute the probability over the next token

2. Select the next token
1. Most likely next token (temperature 0)

2. Sample over the top few most likely tokens

3. Append the selected token to the context

4. Repeat until the <stop> token is reached.



Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr( “Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

“Data-100”

“Data-8”
“CS”

“a”
“ “

<stop>

Probability

The best class at UC Berkeley 
is Data-100

Decode one word:



Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr( “.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token



Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr( “.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token

“.”

<stop>
“!”

“and”
“☺“

“because”

Probability

The best class at UC Berkeley 

is Data-100.

Decode one word:



Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr( “.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token

“.”

<stop>
“!”

“and”
“☺“

“because”

Probability

The best class at UC Berkeley 
is Data-100<stop>

Decode one word:

Sample according to probabilities



Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr( “.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token

“.”

<stop>
“!”

“and”
“☺“

“because”

Probability

The best class at UC Berkeley 

is Data-100.

Decode one word:



Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr( <stop> | “The best class at UC Berkeley is Data-100.”]) Model:

Context (ordered tokens)Next Token

<stop>

“ ”
“\n”
“☺”

“.“
“FA23”

Probability

The best class at UC Berkeley 
is Data-100.<stop>

Decode one word:

Stop decoding!



Quick Recap

➢ Causal language modeling predict next token given context 

➢ Auto-regressive (iterative) decoding:

Pr( “Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

The best class at UC Berkeley is
The best class at UC Berkeley is Data-100

The best class at UC Berkeley is Data-100!

The best class at UC Berkeley is Data-100!<stop>

Call model many times.
Slow to compute!



Can we predict the next several 

tokens in parallel (at the same 
time)?

Please download and install the 
Slido app on all computers you 
use

ⓘ Start presenting to display the poll results on this slide.



Building a basic Language Model

➢ How do we implement this model?

➢ Solution builds on simple classification ideas

I am going to give a high-level intuition and “explain” some of 
the basic parts.  

Pr( “Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token



Language in High Dimensions

Term-Document Matrix
counts of each word in 

each document

(normalized using TF-IDF)

W
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Documents

?

Embedding 
Matrix

Low Dim. 
Rep. of 

each word
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Latent Factors

How would we go from a high-dimension term frequency matrix 
to a low-dimensional term embedding matrix?



How would we go from a high-dimension term 

frequency matrix to a low-dimensional term 
embedding matrix?

Please download and install the 
Slido app on all computers you 
use

ⓘ Start presenting to display the poll results on this slide.



Language in High Dimensions

➢ Ideas here date back to Latent Semantic Analysis (1988)
➢ PCA (you already know how to do this)

➢ Earlier in 1950s Linguistics using

Term-Document Matrix
counts of each word in 

each document

(normalized using TF-IDF)
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Documents

PCA

Embedding 
Matrix

Low Dim. 
Rep. of 

each word
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Bird

Dog

Airplane

Latent Factors

https://www.microsoft.com/en-us/research/publication/lsa-and-information-retrieval-getting-back-to-basics/
https://en.wikipedia.org/wiki/Distributional_semantics


Building a basic
Language Model

Pr( “time” | “Once upon a”) 

Predict the next word (prob. of all possible next words) 
given the context (all the previous words).

Modeling Goal:



Building a basic
Language Model

Pr( “time” | “Once upon a”) 

Embedding Matrix
“Dictionary”
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Building a basic
Language Model

32K Tokens

θ
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3
,0

0
0

logits=

32K Tokens

1

= SoftMax(                          )“time” logits

Converting real numbers to prob.:

These are real numbers

Need a probability.

Embedding Matrix
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Pr( “time” | “Once upon a”) 



Question:
➢ Does the order of the words in the context affect our 

prediction (the prob. of each next word)?
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= SoftMax(                          )“time” logitsPr( “time” | “Once upon a”) 



Does the order of the words in 

the context affect our 
prediction?

Please download and install the 
Slido app on all computers you 
use

ⓘ Start presenting to display the poll results on this slide.



Question:
➢ Does the order of the words in the context affect our 

prediction (the prob. of each next word)?

x

θ“a”

θ“once”

θ“upon”
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11

= SoftMax(                          )“time” logitsPr( “time” | “Once upon a”) 

Changing the order of the 

Average operation doesn’t 

change the Average.



x
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Positional
Information?

All words are not 
equally important

Not Big 
Enough!

Pr( “time” | “Once upon a”) 



Encoding Positional Information

Feature Engineering!

➢ Add positional encoding 
to each token embedding

➢ Often based on trig. fns. 
so that nearby encodings 
are similar

θ“a”

θ“once”

θ“upon”

3,000

Weight

Matrix

3,000

3
,0

0
0

Issues with our model

Order of 
words is lost.

Pr( “time” | “Once upon a”) 
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Pos. 3

3,000
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θ“once”
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Issues with our model

All words are not 
equally important
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Tell a short story about a fairy 
princess named Alice.

Once upon a time there was a 
fairy princess named _____

What words in the context most predict the next word?

(Where should we attend?)



Tell a short story about a fairy 
princess named Alice.

Once upon a time there was a 
fairy princess named _____

What words in the context most predict the next word?

(Where should we attend?)



The Transformer 
Model
A somewhat simplified 
explanation of self-attention*

*Which is famously difficult to explain.



Computing a Weighted Average

Weight

Matrix

3,000
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Computing a Weighted Average

➢ How do we compute ⍺?
➢ Self Attention!

Weight

Matrix

3,000
3
,0

0
0

=x

x“a”

x“once”

x“upon”

Y“a”

Y“once”

Y“upon” Yw_avg=

(⍺1, ⍺2, ⍺3) x

Probabilities: should be between 
0 and 1 and sum to 1 

3,000

3



Weight
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Computing Attention Weights (⍺1, ⍺2, ⍺3) – w.r.t. the last word
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(2) Compute “Query” for the last word.

(3) Multiply keys by the query
And then take the soft-max
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Transformer Recap

➢ Computed a weighted average 
over the “output” embeddings

➢ Weights (⍺1, ⍺2, ⍺3) were computed by 
➢ computing keys for each input token

➢ computing query for the last token

➢ taking the soft max of the product
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Llama-3 Architecture

➢ RMSNorm (Layer Norm.) –
improve training stability

➢ FFN with SwiGLU – 
Feed forward network

➢ Residual Connections – 
improve training stability

➢ Repeated N Times –
increase model size

BPE Token Embeddings

RMSNorm

Input Tokens

Grouped Query Attention

Q+RoPE K+RoPE V

RMSNorm

FFN with SwiGLU

RMSNorm

Linear

SoftMax

+

+

R
e

p
e

a
te

d
 N

 T
im

e
s

See Actual Code (its just one python script!)

https://github.com/meta-llama/llama-models/blob/17107dbe165f48270eebb17014ba880c6eb6a7c9/models/llama3/reference_impl/model.py


Going Big!

BPE Token Embeddings

RMSNorm

Input Tokens

Grouped Query Attention

Q+RoPE K+RoPE V

RMSNorm

FFN with SwiGLU

RMSNorm

Linear

SoftMax

+

+

R
e

p
e
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d
 N
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e
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Llama-3 70b Instruct: 8192 hidden size, 80 layers, 64 query heads, 8 kv heads.

Llama 2



Unrolling 
the
Model
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Pr(you|Can)



Unrolling 
the
Model
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Unrolling 
the
Model
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Unrolling 
the
Model

the
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Pr(you|Can) Pr(predict|Can you) Pr(the|Can you predict) Pr(next|Can you predict the)

Masked
Attention

Auto-regressive

Attend only to 
previous tokens

Decoder only 
Transformer
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Question

the
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Which token requires the most 

computation to predict?

Please download and install the 
Slido app on all computers you 
use

ⓘ Start presenting to display the poll results on this slide.



What is Chat GPT?

Chat: natural language system

 G: Generatively – Designed to model the creation of text 

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Chat GPT is just one example of a

Large Language Model (LLM)



Generative Pre-training

We the People of the United States, in Order to form a 
more perfect Union, establish Justice, … 

Pr(“We” | “”)

Pr(“the” | “We”)

Pr(“People” | “We the”)

Pr(“of” | “We the People”)

Pr(“the” | “We the People of”)

…

Single Passage of Text

Each token

is a training example

Tune the model parameters 

to maximize the likelihood 
of the next token



Reddit

Links

Pre-training on Everything*

➢ Train the model on a large collection of data to learn 
generalizable patterns

➢ Llama-3 “open-source” models trained on 15.6T tokens 
from an unknown data mix.
➢ 405-billion parameter model trained on 16K H100s ($25K each)

➢ 39.3M GPU hours
*Everything that is legal to use for training hopefully…

OpenAI

GPT3 

Data Mix

https://huggingface.co/meta-llama/Meta-Llama-3.1-405B


What have we learned?

➢ Model approximates the data
➢ Doesn’t fit perfectly.

➢ Goal: capture the underlying 
structure of all language (and 
therefore human knowledge)

➢ Interpolation: we can generate 
all the likely documents 
between the documents

Model

The next token for some 

training document

Analogy to 

Regression



What is Chat GPT

Chat: natural language system

 G: Generatively – Designed to model the creation of text 

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Now you know
There is still one 

more thing

GPT alone can’t chat!



Need to Teach Model to 
Follow Instructions (and be fun!)

➢ Generative pre-training captures knowledge
➢ To finish the statement “Four score and seven years ago …” 

you need to learn to memorize the text

➢ Resulting model predicts the rest of a statement.
➢ “What is attorney client privilege?” the model might generate 

“Provide a concise answer using an example from class.”

➢ Use Supervised Fine-Tuning or RLHF to adjust “behavior” of 
model to follow instructions and chat like a human.



Fine-tuning

Running additional training iterations with a specific task

➢ The task differs from the original pre-training task

➢ New objective: translate sentence, follow instruction

➢ New training data from new source domain

➢ Smaller learning rate (as you get older you learn slower?)
➢ Avoid “catastrophic forgetting” (new information causes 

forgetting pre-training information)



Open-source Instruction Fine-Tuned LLMs
and LLM-as-a-judge

➢ First open-source model that was 
“comparable” to ChatGPT
➢ Fine-tuned LlaMA-13B on ShareGPT Data

➢ Helped launch academic open-source GenAI research

Vicuña

Tiny

High Quality Data
70K conversations 
(~800MB)

https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2306.05685
https://www.semianalysis.com/p/google-we-have-no-moat-and-neither
https://www.semianalysis.com/p/google-we-have-no-moat-and-neither


Reward Optimization

Can further align model with human preferences using 
human preference data: “this is better than that”

Help to make models more robust and perform better in 
safety situations.



What is Chat GPT

Chat: natural language system

 G: Generatively – Designed to model the creation of text 

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Now you know

How are people using it?



In-context 
Learning

Zero-shot relies on model already 

“knowing” how to complete the task.



Retrieval Augmented Generation 
(RAG)

➢ Use external data to augment LLMs

https://acl2023-retrieval-lm.github.io 

https://acl2023-retrieval-lm.github.io/


Large Multi-Modal Models (LMMs)

➢ Combining with vision models to enable visual reasoning

Figure from BLIP-2 Paper

https://arxiv.org/pdf/2301.12597


Commercial and Open-Source Models

➢ Use commercial services: OpenAI, Google, Anthropic, …
➢ State-of-the-art accuracy and fast

➢ Constantly changing black box

➢ Often affordable: priced per token (1M tokens ~ $10USD)

➢ Use open-source models: Llama3, Vicuña (mine!), Mixtral, …
➢ Often built from Meta’s open-source Llama (1,2,3) models

➢ Varying sizes (7B, 13B, 30B, 70B) and quantization levels (low bit precision)

➢ Variable accuracy and speed depends on hardware
➢ Bigger is more accurate and slower

Most organizations are using a mix of these technologies.



Demo (if time): Chatbot Arena

https://chat.lmsys.org 

https://chat.lmsys.org/


Chat: natural language system

 G: Generatively – Designed to model the creation of text 

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Conclusion

Use cases leveraging in-context learning, 
retrieval, and image reasoning

Thank you! Contact Info

Joseph E. Gonzalez
jegonzal@berkeley.edu 

mailto:jegonzal@berkeley.edu
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