
Joseph E. Gonzalez

jegonzal@berkeley.edu

A Brief Introduction to
Large Language Models,
ChatGPT, & GenAI

mailto:jegonzal@berkeley.edu

How often do you use GenAI

(e.g., Gemini, ChatGPT, Claude)

Please download and install the
Slido app on all computers you
use

ⓘ Start presenting to display the poll results on this slide.

Which GenAI technologies

have you used

Please download and install the
Slido app on all computers you
use

ⓘ Start presenting to display the poll results on this slide.

What is Chat GPT?

Chat: natural language system

 G: Generatively – Designed to model the creation of text

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Chat GPT is just one example of a

Large Language Model (LLM)

Explained
Today

What is a

Large Language Model (LLM)?

➢ Large: The model parameters (θ) are BIG!
➢ BILLIONS of PARAMETERS!!!!

Reconciling modern machine learning practice and the bias-variance trade-off

Deep Double Descent: Where Bigger Models and More Data Hurt

https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1912.02292

What is a

Large Language Model (LLM)?

➢ Large: The model parameters (θ) are BIG!
➢ BILLIONS of PARAMETERS!!!!

➢ Language Model: predicting language (e.g., words)

The capital of California is ____________________Sacramento
San Francisco (1862)
Benicia (1853)
Vallejo (1852)

Tell a short story about a
fairy princess named Alice.

Once upon a time there was

a fairy princess named Alice.

Predicting the Next Word is Knowledge

Predicting the next word allows you to:

➢ Answer questions

➢ Tell stories

➢ Accomplish tasks

Generative AI

How do we model the next word?

The capital of California is ____________________Sacramento
San Francisco (1862)
Benicia (1853)
Vallejo (1852)

Modeling Tokens not Words

➢ Tokens represent words, word parts, and special characters

➢ Constructed based on frequency of char. sequences

➢ Allows for new words, misspelling, and numbers

➢ Vocabulary Sizes: Llama-2: 32K → Llama-3: 128K tokens

“The smallest tokenizer!” →

 [“The”, “ small”, “est”, “ token”, “izer”, “!”]Tokens:

Causal Language Modeling

➢ Conditioned on the context

➢ Model probability of next token
➢ Sample or pick most likely

The best class at UC Berkeley is __________

Pr(“Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

“Data-100”

“Data-8”
“CS”

“a”
“ “

<stop>

Probability

N
e

xt
 t

o
k
e

n

Causal Language Modeling

➢ Conditioned on the context

➢ Model probability of next token
➢ Sample or pick most likely

The best class at UC Berkeley is __________

Pr(“Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

How do we go from
predicting a single token to

writing an essay?

One token at a time!

Auto Regressive Decoding

1. Compute the probability over the next token

2. Select the next token
1. Most likely next token (temperature 0)

2. Sample over the top few most likely tokens

3. Append the selected token to the context

4. Repeat until the <stop> token is reached.

Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr(“Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

“Data-100”

“Data-8”
“CS”

“a”
“ “

<stop>

Probability

The best class at UC Berkeley
is Data-100

Decode one word:

Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr(“.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token

Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr(“.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token

“.”

<stop>
“!”

“and”
“☺“

“because”

Probability

The best class at UC Berkeley

is Data-100.

Decode one word:

Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr(“.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token

“.”

<stop>
“!”

“and”
“☺“

“because”

Probability

The best class at UC Berkeley
is Data-100<stop>

Decode one word:

Sample according to probabilities

Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr(“.” | “The best class at UC Berkeley is Data-100”]) Model:

Context (ordered tokens)Next Token

“.”

<stop>
“!”

“and”
“☺“

“because”

Probability

The best class at UC Berkeley

is Data-100.

Decode one word:

Auto-regressive Decoding

➢ Sample one token at a time and add to context

Pr(<stop> | “The best class at UC Berkeley is Data-100.”]) Model:

Context (ordered tokens)Next Token

<stop>

“ ”
“\n”
“☺”

“.“
“FA23”

Probability

The best class at UC Berkeley
is Data-100.<stop>

Decode one word:

Stop decoding!

Quick Recap

➢ Causal language modeling predict next token given context

➢ Auto-regressive (iterative) decoding:

Pr(“Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

The best class at UC Berkeley is
The best class at UC Berkeley is Data-100

The best class at UC Berkeley is Data-100!

The best class at UC Berkeley is Data-100!<stop>

Call model many times.
Slow to compute!

Can we predict the next several

tokens in parallel (at the same
time)?

Please download and install the
Slido app on all computers you
use

ⓘ Start presenting to display the poll results on this slide.

Building a basic Language Model

➢ How do we implement this model?

➢ Solution builds on simple classification ideas

I am going to give a high-level intuition and “explain” some of
the basic parts.

Pr(“Data-100” | “The best class at UC Berkeley is”]) Model:

Context (ordered tokens)Next Token

Language in High Dimensions

Term-Document Matrix
counts of each word in

each document

(normalized using TF-IDF)

W
o

rd
s

(T
o

k
e

n
s)

Documents

?

Embedding
Matrix

Low Dim.
Rep. of

each word

W
o

rd
s

(T
o

k
e

n
s)

Latent Factors

How would we go from a high-dimension term frequency matrix
to a low-dimensional term embedding matrix?

How would we go from a high-dimension term

frequency matrix to a low-dimensional term
embedding matrix?

Please download and install the
Slido app on all computers you
use

ⓘ Start presenting to display the poll results on this slide.

Language in High Dimensions

➢ Ideas here date back to Latent Semantic Analysis (1988)
➢ PCA (you already know how to do this)

➢ Earlier in 1950s Linguistics using

Term-Document Matrix
counts of each word in

each document

(normalized using TF-IDF)

W
o

rd
s

(T
o

k
e

n
s)

Documents

PCA

Embedding
Matrix

Low Dim.
Rep. of

each word

W
o

rd
s

(T
o

k
e

n
s)

Bird

Dog

Airplane

Latent Factors

https://www.microsoft.com/en-us/research/publication/lsa-and-information-retrieval-getting-back-to-basics/
https://en.wikipedia.org/wiki/Distributional_semantics

Building a basic
Language Model

Pr(“time” | “Once upon a”)

Predict the next word (prob. of all possible next words)
given the context (all the previous words).

Modeling Goal:

Building a basic
Language Model

Pr(“time” | “Once upon a”)

Embedding Matrix
“Dictionary”

θ“a”

θ“once”

θ“time”

θ“upon”

3
2

K
 T

o
k
e

n
s

3,000

x

θ“a”

θ“once”

θ“upon”

Weight

Matrix

3,000

3
,0

0
0

3,000

Weight

Matrix

3,000

3
,0

0
0

Y“a”

Y“once”

Y“upon”=

A
v

g
.

Yavg

=

3,000

32K Tokens

x

θ
“
a

”

θ
“
o

n
c

e
”

θ
“
ti
m

e
”

θ
“
u

p
o

n
”

3
,0

0
0

logits=

32K Tokens

1

Parameters

Building a basic
Language Model

32K Tokens

θ
“
ti
m

e
”

θ
“
u

p
o

n
”

3
,0

0
0

logits=

32K Tokens

1

= SoftMax()“time” logits

Converting real numbers to prob.:

These are real numbers

Need a probability.

Embedding Matrix
“Dictionary”

θ“a”

θ“once”

θ“time”

θ“upon”

3
2

K
 T

o
k
e

n
s

3,000

Weight

Matrix

3,000

3
,0

0
0

Parameters

Pr(“time” | “Once upon a”)

Question:
➢ Does the order of the words in the context affect our

prediction (the prob. of each next word)?

x

θ“a”

θ“once”

θ“upon”

3,000

Weight

Matrix

3,000

3
,0

0
0

Y“a”

Y“once”

Y“upon”=

A
v
g

.

Yavg

=

3,000

32K Tokens

x

θ
“
a

”

θ
“
o

n
c

e
”

θ
“
ti
m

e
”

θ
“
u

p
o

n
”

3
,0

0
0

logits=

32K Tokens

11

= SoftMax()“time” logitsPr(“time” | “Once upon a”)

Does the order of the words in

the context affect our
prediction?

Please download and install the
Slido app on all computers you
use

ⓘ Start presenting to display the poll results on this slide.

Question:
➢ Does the order of the words in the context affect our

prediction (the prob. of each next word)?

x

θ“a”

θ“once”

θ“upon”

3,000

Weight

Matrix

3,000

3
,0

0
0

Y“a”

Y“once”

Y“upon”=

A
v
g

.

Yavg

=

3,000

32K Tokens

x

θ
“
a

”

θ
“
o

n
c

e
”

θ
“
ti
m

e
”

θ
“
u

p
o

n
”

3
,0

0
0

logits=

32K Tokens

11

= SoftMax()“time” logitsPr(“time” | “Once upon a”)

Changing the order of the

Average operation doesn’t

change the Average.

x

θ“a”

θ“once”

θ“upon”

3,000

Weight

Matrix

3,000

3
,0

0
0

Y“a”

Y“once”

Y“upon”=

A
v
g

.

Yavg

=

3,000

32K Tokens

x

θ
“
a

”

θ
“
o

n
c

e
”

θ
“
ti
m

e
”

θ
“
u

p
o

n
”

3
,0

0
0

logits=

32K Tokens

11

= SoftMax()“time” logits

Embedding Matrix
“Dictionary”

θ“a”

θ“once”

θ“time”

θ“upon”

3
2

K
 T

o
k
e

n
s

3,000

Weight

Matrix

3,000

3
,0

0
0

ParametersIssues with our model

Positional
Information?

All words are not
equally important

Not Big
Enough!

Pr(“time” | “Once upon a”)

Encoding Positional Information

Feature Engineering!

➢ Add positional encoding
to each token embedding

➢ Often based on trig. fns.
so that nearby encodings
are similar

θ“a”

θ“once”

θ“upon”

3,000

Weight

Matrix

3,000

3
,0

0
0

Issues with our model

Order of
words is lost.

Pr(“time” | “Once upon a”)

x+

Pos. 1

Pos. 2

Pos. 3

3,000

θ“a”

θ“once”

θ“upon”

3,000

Weight

Matrix

3,000

3
,0

0
0

Y“a”

Y“once”

Y“upon”=

A
v
g

.

Yavg

=

3,000

1

Issues with our model

All words are not
equally important

Pr(“time” | “Once upon a”)

x+

Pos. 1

Pos. 2

Pos. 3

3,000

Tell a short story about a fairy
princess named Alice.

Once upon a time there was a
fairy princess named _____

What words in the context most predict the next word?

(Where should we attend?)

Tell a short story about a fairy
princess named Alice.

Once upon a time there was a
fairy princess named _____

What words in the context most predict the next word?

(Where should we attend?)

The Transformer
Model
A somewhat simplified
explanation of self-attention*

*Which is famously difficult to explain.

Computing a Weighted Average

Weight

Matrix

3,000

3
,0

0
0

Y“a”

Y“once”

Y“upon”= Yavg=x

M
e

a
n

x“a”

x“once”

x“upon”

3,000
3

Computing a Weighted Average

➢ How do we compute ⍺?
➢ Self Attention!

Weight

Matrix

3,000
3
,0

0
0

=x

x“a”

x“once”

x“upon”

Y“a”

Y“once”

Y“upon” Yw_avg=

(⍺1, ⍺2, ⍺3) x

Probabilities: should be between
0 and 1 and sum to 1

3,000

3

Weight

Matrix

3,000

3
,0

0
0

=x

x“a”

x“once”

x“upon”

Y“a”

Y“once”

Y“upon” Yw_avg=

(⍺1, ⍺2, ⍺3) x

3,000

3

Computing Attention Weights (⍺1, ⍺2, ⍺3) – w.r.t. the last word

Key

Matrix

64

3
,0

0
0

x

ka

konce

kupon=

Keys

x“a”

x“once”

x“upon”

3,000

3

(1) Compute “Keys”

Query

Matrix

64

3
,0

0
0

x qa=

Queryx“a”

3,000

1

(2) Compute “Query” for the last word.

(3) Multiply keys by the query
And then take the soft-max

ka

konce

kupon

Keys

q
a

Q
u

e
ryxSoftMax() = (⍺1, ⍺2, ⍺3)

Transformer Recap

➢ Computed a weighted average
over the “output” embeddings

➢ Weights (⍺1, ⍺2, ⍺3) were computed by
➢ computing keys for each input token

➢ computing query for the last token

➢ taking the soft max of the product

Y“a”

Y“once”

Y“upon”

(⍺1, ⍺2, ⍺3) x

ka

konce

kupon

Keys

q
a

Q
u

e
ryxSoftMax() = (⍺1, ⍺2, ⍺3)

θ“a”

θ“once”

θ“time”

θ“upon”

3
2

K
 T

o
k
e

n
s

3,000

Weight

Matrix

3,000

3
,0

0
0

Many Parameters

Key

Matrix

64

3
,0

0
0

Query

Matrix

64

3
,0

0
0

Llama-3 Architecture

➢ RMSNorm (Layer Norm.) –
improve training stability

➢ FFN with SwiGLU –
Feed forward network

➢ Residual Connections –
improve training stability

➢ Repeated N Times –
increase model size

BPE Token Embeddings

RMSNorm

Input Tokens

Grouped Query Attention

Q+RoPE K+RoPE V

RMSNorm

FFN with SwiGLU

RMSNorm

Linear

SoftMax

+

+

R
e

p
e

a
te

d
 N

 T
im

e
s

See Actual Code (its just one python script!)

https://github.com/meta-llama/llama-models/blob/17107dbe165f48270eebb17014ba880c6eb6a7c9/models/llama3/reference_impl/model.py

Going Big!

BPE Token Embeddings

RMSNorm

Input Tokens

Grouped Query Attention

Q+RoPE K+RoPE V

RMSNorm

FFN with SwiGLU

RMSNorm

Linear

SoftMax

+

+

R
e

p
e

a
te

d
 N

 T
im

e
s

Llama-3 70b Instruct: 8192 hidden size, 80 layers, 64 query heads, 8 kv heads.

Llama 2

Unrolling
the
Model

Can

BPE

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Pr(you|Can)

Unrolling
the
Model

you

BPE

Attn.

FFN
Norm

Norm

Can

BPE

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Pr(you|Can) Pr(predict|Can you)

Unrolling
the
Model

predict

BPE

Attn.

FFN
Norm

Norm

you

BPE

Attn.

FFN
Norm

Norm

Can

BPE

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Pr(you|Can) Pr(predict|Can you) Pr(the|Can you predict)

Unrolling
the
Model

the

BPE

Attn.

FFN
Norm

Norm

predict

BPE

Attn.

FFN
Norm

Norm

you

BPE

Attn.

FFN
Norm

Norm

Can

BPE

Attn.

FFN
Norm

Norm

next

BPE

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Pr(you|Can) Pr(predict|Can you) Pr(the|Can you predict) Pr(next|Can you predict the)

Pr(you|Can) Pr(predict|Can you) Pr(the|Can you predict) Pr(next|Can you predict the)

Masked
Attention

Auto-regressive

Attend only to
previous tokens

Decoder only
Transformer

the

BPE

FFN
Norm

Norm

predict

BPE

FFN
Norm

Norm

you

BPE

FFN
Norm

Norm

Can

BPE

FFN
Norm

Norm

next

BPE

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

FFN
Norm

Norm

Attn.Attn.Attn.Attn. Attn.

Attn.Attn.Attn.Attn. Attn.

Attn.Attn.Attn.Attn. Attn.

Question

the

BPE

Attn.

FFN
Norm

Norm

predict

BPE

Attn.

FFN
Norm

Norm

you

BPE

Attn.

FFN
Norm

Norm

Can

BPE

Attn.

FFN
Norm

Norm

next

BPE

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Attn.

FFN
Norm

Norm

Which token

requires the most
computation?

Pr(you|Can) Pr(predict|Can you) Pr(the|Can you predict) Pr(next|Can you predict the)

Which token requires the most

computation to predict?

Please download and install the
Slido app on all computers you
use

ⓘ Start presenting to display the poll results on this slide.

What is Chat GPT?

Chat: natural language system

 G: Generatively – Designed to model the creation of text

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Chat GPT is just one example of a

Large Language Model (LLM)

Generative Pre-training

We the People of the United States, in Order to form a
more perfect Union, establish Justice, …

Pr(“We” | “”)

Pr(“the” | “We”)

Pr(“People” | “We the”)

Pr(“of” | “We the People”)

Pr(“the” | “We the People of”)

…

Single Passage of Text

Each token

is a training example

Tune the model parameters

to maximize the likelihood
of the next token

Reddit

Links

Pre-training on Everything*

➢ Train the model on a large collection of data to learn
generalizable patterns

➢ Llama-3 “open-source” models trained on 15.6T tokens
from an unknown data mix.
➢ 405-billion parameter model trained on 16K H100s ($25K each)

➢ 39.3M GPU hours
*Everything that is legal to use for training hopefully…

OpenAI

GPT3

Data Mix

https://huggingface.co/meta-llama/Meta-Llama-3.1-405B

What have we learned?

➢ Model approximates the data
➢ Doesn’t fit perfectly.

➢ Goal: capture the underlying
structure of all language (and
therefore human knowledge)

➢ Interpolation: we can generate
all the likely documents
between the documents

Model

The next token for some

training document

Analogy to

Regression

What is Chat GPT

Chat: natural language system

 G: Generatively – Designed to model the creation of text

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Now you know
There is still one

more thing

GPT alone can’t chat!

Need to Teach Model to
Follow Instructions (and be fun!)

➢ Generative pre-training captures knowledge
➢ To finish the statement “Four score and seven years ago …”

you need to learn to memorize the text

➢ Resulting model predicts the rest of a statement.
➢ “What is attorney client privilege?” the model might generate

“Provide a concise answer using an example from class.”

➢ Use Supervised Fine-Tuning or RLHF to adjust “behavior” of
model to follow instructions and chat like a human.

Fine-tuning

Running additional training iterations with a specific task

➢ The task differs from the original pre-training task

➢ New objective: translate sentence, follow instruction

➢ New training data from new source domain

➢ Smaller learning rate (as you get older you learn slower?)
➢ Avoid “catastrophic forgetting” (new information causes

forgetting pre-training information)

Open-source Instruction Fine-Tuned LLMs
and LLM-as-a-judge

➢ First open-source model that was
“comparable” to ChatGPT
➢ Fine-tuned LlaMA-13B on ShareGPT Data

➢ Helped launch academic open-source GenAI research

Vicuña

Tiny

High Quality Data
70K conversations
(~800MB)

https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2306.05685
https://www.semianalysis.com/p/google-we-have-no-moat-and-neither
https://www.semianalysis.com/p/google-we-have-no-moat-and-neither

Reward Optimization

Can further align model with human preferences using
human preference data: “this is better than that”

Help to make models more robust and perform better in
safety situations.

What is Chat GPT

Chat: natural language system

 G: Generatively – Designed to model the creation of text

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Now you know

How are people using it?

In-context
Learning

Zero-shot relies on model already

“knowing” how to complete the task.

Retrieval Augmented Generation
(RAG)

➢ Use external data to augment LLMs

https://acl2023-retrieval-lm.github.io

https://acl2023-retrieval-lm.github.io/

Large Multi-Modal Models (LMMs)

➢ Combining with vision models to enable visual reasoning

Figure from BLIP-2 Paper

https://arxiv.org/pdf/2301.12597

Commercial and Open-Source Models

➢ Use commercial services: OpenAI, Google, Anthropic, …
➢ State-of-the-art accuracy and fast

➢ Constantly changing black box

➢ Often affordable: priced per token (1M tokens ~ $10USD)

➢ Use open-source models: Llama3, Vicuña (mine!), Mixtral, …
➢ Often built from Meta’s open-source Llama (1,2,3) models

➢ Varying sizes (7B, 13B, 30B, 70B) and quantization levels (low bit precision)

➢ Variable accuracy and speed depends on hardware
➢ Bigger is more accurate and slower

Most organizations are using a mix of these technologies.

Demo (if time): Chatbot Arena

https://chat.lmsys.org

https://chat.lmsys.org/

Chat: natural language system

 G: Generatively – Designed to model the creation of text

 P: Pretrained – Trained on lots of naturally occurring data

 T: Transformer – A kind of neural network architecture

Conclusion

Use cases leveraging in-context learning,
retrieval, and image reasoning

Thank you! Contact Info

Joseph E. Gonzalez
jegonzal@berkeley.edu

mailto:jegonzal@berkeley.edu

	Slide 1: A Brief Introduction to Large Language Models, ChatGPT, & GenAI
	Slide 2
	Slide 3
	Slide 4: What is Chat GPT?
	Slide 5: What is a Large Language Model (LLM)?
	Slide 6: What is a Large Language Model (LLM)?
	Slide 7: Tell a short story about a fairy princess named Alice.
	Slide 8: Predicting the Next Word is Knowledge
	Slide 9: Modeling Tokens not Words
	Slide 10: Causal Language Modeling
	Slide 11: Causal Language Modeling
	Slide 12: Auto Regressive Decoding
	Slide 13: Auto-regressive Decoding
	Slide 14: Auto-regressive Decoding
	Slide 15: Auto-regressive Decoding
	Slide 16: Auto-regressive Decoding
	Slide 17: Auto-regressive Decoding
	Slide 18: Auto-regressive Decoding
	Slide 19: Quick Recap
	Slide 20
	Slide 22: Building a basic Language Model
	Slide 23: Language in High Dimensions
	Slide 24
	Slide 25: Language in High Dimensions
	Slide 26: Building a basic Language Model
	Slide 27: Building a basic Language Model
	Slide 28: Building a basic Language Model
	Slide 29: Question:
	Slide 30
	Slide 31: Question:
	Slide 32: Building a basic Language Model
	Slide 33: Encoding Positional Information
	Slide 34: Encoding Positional Information
	Slide 35: Tell a short story about a fairy princess named Alice. Once upon a time there was a fairy princess named _____
	Slide 36: Tell a short story about a fairy princess named Alice. Once upon a time there was a fairy princess named _____
	Slide 37: The Transformer Model
	Slide 38: Computing a Weighted Average
	Slide 39: Computing a Weighted Average
	Slide 40: Computing a Weighted Average
	Slide 41: Transformer Recap
	Slide 42: Llama-3 Architecture
	Slide 43: Going Big!
	Slide 44: Unrolling the Model
	Slide 45: Unrolling the Model
	Slide 46: Unrolling the Model
	Slide 47: Unrolling the Model
	Slide 48: Masked Attention
	Slide 49: Question
	Slide 50
	Slide 51: What is Chat GPT?
	Slide 52: Generative Pre-training
	Slide 53: Pre-training on Everything*
	Slide 55: What have we learned?
	Slide 56: What is Chat GPT
	Slide 57: Need to Teach Model to Follow Instructions (and be fun!)
	Slide 58: Fine-tuning
	Slide 59: Open-source Instruction Fine-Tuned LLMs and LLM-as-a-judge
	Slide 60: Reward Optimization
	Slide 61: What is Chat GPT
	Slide 62: In-context Learning
	Slide 63: Retrieval Augmented Generation (RAG)
	Slide 64: Large Multi-Modal Models (LMMs)
	Slide 65: Commercial and Open-Source Models
	Slide 66: Demo (if time): Chatbot Arena
	Slide 67: Conclusion

