# `pd` is the conventional alias for Pandas, as `np` is for NumPy
import pandas as pd
Series, DataFrames, and Indices¶
Series, DataFrames, and Indices are fundamental pandas
data structures for storing tabular data and processing the data using vectorized operations.
s = pd.Series(["welcome", "to", "data 100"])
s
0 welcome 1 to 2 data 100 dtype: object
s.values
array(['welcome', 'to', 'data 100'], dtype=object)
s.index
RangeIndex(start=0, stop=3, step=1)
In the example above, pandas
automatically generated an Index
of integer labels. We can also create a Series
object by providing a custom Index
.
s = pd.Series([-1, 10, 2], index=["a", "b", "c"])
s
a -1 b 10 c 2 dtype: int64
s.values
array([-1, 10, 2])
s.index
Index(['a', 'b', 'c'], dtype='object')
After it has been created, we can reassign the Index of a Series
to a new Index.
s.index = ["first", "second", "third"]
s
first -1 second 10 third 2 dtype: int64
Selection in Series¶
We can select a single value or a set of values in a Series
using:
- A single label
- A list of labels
- A filtering condition
s = pd.Series([4, -2, 0, 6], index=["a", "b", "c", "d"])
s
a 4 b -2 c 0 d 6 dtype: int64
Selection using one or more label(s)
# Selection using a single label
# Notice how the return value is a single array element
s["a"]
4
# Selection using a list of labels
# Notice how the return value is another Series
s[["a", "c"]]
a 4 c 0 dtype: int64
Selection using a filter condition
# Filter condition: select all elements greater than 0
s>0
a True b False c False d True dtype: bool
# Use the Boolean filter to select data from the original Series
s[s>0]
a 4 d 6 dtype: int64
DataFrame¶
A DataFrame
is a 2-D tabular data structure with both row and column labels. In this lecture, we will see how a DataFrame
can be created from scratch or loaded from a file.
Creating a new DataFrame
object¶
We can also create a DataFrame
in a variety of ways. Here, we cover the following:
- From a CSV file
- Using a list and column names
- From a dictionary
- From a
Series
Creating a DataFrame
from a CSV file¶
For loading data into a DataFrame
, pandas
has a number of very useful file reading tools. We'll be using read_csv
today to load data from a CSV file into a DataFrame
object.
elections = pd.read_csv("data/elections.csv")
elections
Year | Candidate | Party | Popular vote | Result | % | |
---|---|---|---|---|---|---|
0 | 1824 | Andrew Jackson | Democratic-Republican | 151271 | loss | 57.210122 |
1 | 1824 | John Quincy Adams | Democratic-Republican | 113142 | win | 42.789878 |
2 | 1828 | Andrew Jackson | Democratic | 642806 | win | 56.203927 |
3 | 1828 | John Quincy Adams | National Republican | 500897 | loss | 43.796073 |
4 | 1832 | Andrew Jackson | Democratic | 702735 | win | 54.574789 |
... | ... | ... | ... | ... | ... | ... |
177 | 2016 | Jill Stein | Green | 1457226 | loss | 1.073699 |
178 | 2020 | Joseph Biden | Democratic | 81268924 | win | 51.311515 |
179 | 2020 | Donald Trump | Republican | 74216154 | loss | 46.858542 |
180 | 2020 | Jo Jorgensen | Libertarian | 1865724 | loss | 1.177979 |
181 | 2020 | Howard Hawkins | Green | 405035 | loss | 0.255731 |
182 rows × 6 columns
By passing a column to the index_col
attribute, the Index
can be defined at the initialization.
elections = pd.read_csv("data/elections.csv", index_col="Candidate")
elections
Year | Party | Popular vote | Result | % | |
---|---|---|---|---|---|
Candidate | |||||
Andrew Jackson | 1824 | Democratic-Republican | 151271 | loss | 57.210122 |
John Quincy Adams | 1824 | Democratic-Republican | 113142 | win | 42.789878 |
Andrew Jackson | 1828 | Democratic | 642806 | win | 56.203927 |
John Quincy Adams | 1828 | National Republican | 500897 | loss | 43.796073 |
Andrew Jackson | 1832 | Democratic | 702735 | win | 54.574789 |
... | ... | ... | ... | ... | ... |
Jill Stein | 2016 | Green | 1457226 | loss | 1.073699 |
Joseph Biden | 2020 | Democratic | 81268924 | win | 51.311515 |
Donald Trump | 2020 | Republican | 74216154 | loss | 46.858542 |
Jo Jorgensen | 2020 | Libertarian | 1865724 | loss | 1.177979 |
Howard Hawkins | 2020 | Green | 405035 | loss | 0.255731 |
182 rows × 5 columns
Creating a DataFrame
using a list and column names¶
# Creating a single-column DataFrame using a list
df_list_1 = pd.DataFrame([1, 2, 3],
columns=["Number"])
display(df_list_1)
Number | |
---|---|
0 | 1 |
1 | 2 |
2 | 3 |
# Creating a multi-column DataFrame using a list of lists
df_list_2 = pd.DataFrame([[1, "one"], [2, "two"]],
columns=["Number", "Description"])
df_list_2
Number | Description | |
---|---|---|
0 | 1 | one |
1 | 2 | two |
Creating a DataFrame
from a dictionary¶
# Creating a DataFrame from a dictionary of columns
df_dict_1 = pd.DataFrame({"Fruit":["Strawberry", "Orange"],
"Price":[5.49, 3.99]})
df_dict_1
Fruit | Price | |
---|---|---|
0 | Strawberry | 5.49 |
1 | Orange | 3.99 |
# Creating a DataFrame from a list of row dictionaries
df_dict_2 = pd.DataFrame([{"Fruit":"Strawberry", "Price":5.49},
{"Fruit":"Orange", "Price":3.99}])
df_dict_2
Fruit | Price | |
---|---|---|
0 | Strawberry | 5.49 |
1 | Orange | 3.99 |
Creating a DataFrame
from a Series
¶
# In the examples below, we create a DataFrame from a Series
s_a = pd.Series(["a1", "a2", "a3"], index=["r1", "r2", "r3"])
s_b = pd.Series(["b1", "b2", "b3"], index=["r1", "r2", "r3"])
# Passing Series objects for columns
df_ser = pd.DataFrame({"A-column":s_a, "B-column":s_b})
df_ser
A-column | B-column | |
---|---|---|
r1 | a1 | b1 |
r2 | a2 | b2 |
r3 | a3 | b3 |
# Passing a Series to the DataFrame constructor to make a one-column DataFrame
df_ser = pd.DataFrame(s_a)
df_ser
0 | |
---|---|
r1 | a1 |
r2 | a2 |
r3 | a3 |
# Using to_frame() to convert a Series to DataFrame
ser_to_df = s_a.to_frame()
ser_to_df
0 | |
---|---|
r1 | a1 |
r2 | a2 |
r3 | a3 |
# Creating a DataFrame from a CSV file and specifying the Index column
elections = pd.read_csv("data/elections.csv", index_col="Candidate")
elections.head(5) # Using `.head` shows only the first 5 rows to save space
Year | Party | Popular vote | Result | % | |
---|---|---|---|---|---|
Candidate | |||||
Andrew Jackson | 1824 | Democratic-Republican | 151271 | loss | 57.210122 |
John Quincy Adams | 1824 | Democratic-Republican | 113142 | win | 42.789878 |
Andrew Jackson | 1828 | Democratic | 642806 | win | 56.203927 |
John Quincy Adams | 1828 | National Republican | 500897 | loss | 43.796073 |
Andrew Jackson | 1832 | Democratic | 702735 | win | 54.574789 |
elections.reset_index(inplace=True) # Need to reset the Index to keep 'Candidate' as one of the DataFrane Columns
elections.set_index("Party", inplace=True) # This sets the Index to the "Candidate" column
elections
Candidate | Year | Popular vote | Result | % | |
---|---|---|---|---|---|
Party | |||||
Democratic-Republican | Andrew Jackson | 1824 | 151271 | loss | 57.210122 |
Democratic-Republican | John Quincy Adams | 1824 | 113142 | win | 42.789878 |
Democratic | Andrew Jackson | 1828 | 642806 | win | 56.203927 |
National Republican | John Quincy Adams | 1828 | 500897 | loss | 43.796073 |
Democratic | Andrew Jackson | 1832 | 702735 | win | 54.574789 |
... | ... | ... | ... | ... | ... |
Green | Jill Stein | 2016 | 1457226 | loss | 1.073699 |
Democratic | Joseph Biden | 2020 | 81268924 | win | 51.311515 |
Republican | Donald Trump | 2020 | 74216154 | loss | 46.858542 |
Libertarian | Jo Jorgensen | 2020 | 1865724 | loss | 1.177979 |
Green | Howard Hawkins | 2020 | 405035 | loss | 0.255731 |
182 rows × 5 columns
DataFrame
attributes: index
, columns
, and shape
¶
elections.index
Index(['Democratic-Republican', 'Democratic-Republican', 'Democratic', 'National Republican', 'Democratic', 'National Republican', 'Anti-Masonic', 'Whig', 'Democratic', 'Whig', ... 'Constitution', 'Republican', 'Independent', 'Libertarian', 'Democratic', 'Green', 'Democratic', 'Republican', 'Libertarian', 'Green'], dtype='object', name='Party', length=182)
elections.columns
Index(['Candidate', 'Year', 'Popular vote', 'Result', '%'], dtype='object')
The Index
column can be set to the default list of integers by calling reset_index()
on a DataFrame
.
elections.reset_index(inplace=True) # Revert the Index back to its default numeric labeling
elections
Party | Candidate | Year | Popular vote | Result | % | |
---|---|---|---|---|---|---|
0 | Democratic-Republican | Andrew Jackson | 1824 | 151271 | loss | 57.210122 |
1 | Democratic-Republican | John Quincy Adams | 1824 | 113142 | win | 42.789878 |
2 | Democratic | Andrew Jackson | 1828 | 642806 | win | 56.203927 |
3 | National Republican | John Quincy Adams | 1828 | 500897 | loss | 43.796073 |
4 | Democratic | Andrew Jackson | 1832 | 702735 | win | 54.574789 |
... | ... | ... | ... | ... | ... | ... |
177 | Green | Jill Stein | 2016 | 1457226 | loss | 1.073699 |
178 | Democratic | Joseph Biden | 2020 | 81268924 | win | 51.311515 |
179 | Republican | Donald Trump | 2020 | 74216154 | loss | 46.858542 |
180 | Libertarian | Jo Jorgensen | 2020 | 1865724 | loss | 1.177979 |
181 | Green | Howard Hawkins | 2020 | 405035 | loss | 0.255731 |
182 rows × 6 columns
elections.shape
(182, 6)
Slicing in DataFrame
s¶
We can use .head
to return only a few rows of a dataframe.
# Loading DataFrame again to keep the original ordering of columns
elections = pd.read_csv("data/elections.csv")
elections.head() # By default, calling .head with no argument will show the first 5 rows
Year | Candidate | Party | Popular vote | Result | % | |
---|---|---|---|---|---|---|
0 | 1824 | Andrew Jackson | Democratic-Republican | 151271 | loss | 57.210122 |
1 | 1824 | John Quincy Adams | Democratic-Republican | 113142 | win | 42.789878 |
2 | 1828 | Andrew Jackson | Democratic | 642806 | win | 56.203927 |
3 | 1828 | John Quincy Adams | National Republican | 500897 | loss | 43.796073 |
4 | 1832 | Andrew Jackson | Democratic | 702735 | win | 54.574789 |
elections.head(3)
Year | Candidate | Party | Popular vote | Result | % | |
---|---|---|---|---|---|---|
0 | 1824 | Andrew Jackson | Democratic-Republican | 151271 | loss | 57.210122 |
1 | 1824 | John Quincy Adams | Democratic-Republican | 113142 | win | 42.789878 |
2 | 1828 | Andrew Jackson | Democratic | 642806 | win | 56.203927 |
We can also use .tail
to get the last so many rows.
elections.tail(5)
Year | Candidate | Party | Popular vote | Result | % | |
---|---|---|---|---|---|---|
177 | 2016 | Jill Stein | Green | 1457226 | loss | 1.073699 |
178 | 2020 | Joseph Biden | Democratic | 81268924 | win | 51.311515 |
179 | 2020 | Donald Trump | Republican | 74216154 | loss | 46.858542 |
180 | 2020 | Jo Jorgensen | Libertarian | 1865724 | loss | 1.177979 |
181 | 2020 | Howard Hawkins | Green | 405035 | loss | 0.255731 |
Label-Based Extraction Usingloc
¶
Arguments to .loc
can be:
- A list.
- A slice (syntax is inclusive of the right-hand side of the slice).
- A single value.
loc
selects items by row and column label.
# Selection by a list
elections.loc[[87, 25, 179], ["Year", "Candidate", "Result"]]
Year | Candidate | Result | |
---|---|---|---|
87 | 1932 | Herbert Hoover | loss |
25 | 1860 | John C. Breckinridge | loss |
179 | 2020 | Donald Trump | loss |
# Selection by a list and a slice of columns
elections.loc[[87, 25, 179], "Popular vote":"%"]
Popular vote | Result | % | |
---|---|---|---|
87 | 15761254 | loss | 39.830594 |
25 | 848019 | loss | 18.138998 |
179 | 74216154 | loss | 46.858542 |
# Extracting all rows using a colon
elections.loc[:, ["Year", "Candidate", "Result"]]
Year | Candidate | Result | |
---|---|---|---|
0 | 1824 | Andrew Jackson | loss |
1 | 1824 | John Quincy Adams | win |
2 | 1828 | Andrew Jackson | win |
3 | 1828 | John Quincy Adams | loss |
4 | 1832 | Andrew Jackson | win |
... | ... | ... | ... |
177 | 2016 | Jill Stein | loss |
178 | 2020 | Joseph Biden | win |
179 | 2020 | Donald Trump | loss |
180 | 2020 | Jo Jorgensen | loss |
181 | 2020 | Howard Hawkins | loss |
182 rows × 3 columns
# Extracting all columns using a colon
elections.loc[[87, 25, 179], :]
Year | Candidate | Party | Popular vote | Result | % | |
---|---|---|---|---|---|---|
87 | 1932 | Herbert Hoover | Republican | 15761254 | loss | 39.830594 |
25 | 1860 | John C. Breckinridge | Southern Democratic | 848019 | loss | 18.138998 |
179 | 2020 | Donald Trump | Republican | 74216154 | loss | 46.858542 |
# Selection by a list and a single-column label
elections.loc[[87, 25, 179], "Popular vote"]
87 15761254 25 848019 179 74216154 Name: Popular vote, dtype: int64
# Note that if we pass "Popular vote" in a list, the output will be a DataFrame
elections.loc[[87, 25, 179], ["Popular vote"]]
Popular vote | |
---|---|
87 | 15761254 |
25 | 848019 |
179 | 74216154 |
# Selection by a row label and a column label
elections.loc[0, "Candidate"]
'Andrew Jackson'
Integer-Based Extraction Using iloc
¶
iloc
selects items by row and column integer position.
Arguments to .iloc
can be:
- A list.
- A slice (syntax is exclusive of the right hand side of the slice).
- A single value.
# Select the rows at positions 1, 2, and 3.
# Select the columns at positions 0, 1, and 2.
# Remember that Python indexing begins at position 0!
elections.iloc[[1, 2, 3], [0, 1, 2]]
Year | Candidate | Party | |
---|---|---|---|
1 | 1824 | John Quincy Adams | Democratic-Republican |
2 | 1828 | Andrew Jackson | Democratic |
3 | 1828 | John Quincy Adams | National Republican |
# Index-based extraction using a list of rows and a slice of column indices
elections.iloc[[1, 2, 3], 0:3]
Year | Candidate | Party | |
---|---|---|---|
1 | 1824 | John Quincy Adams | Democratic-Republican |
2 | 1828 | Andrew Jackson | Democratic |
3 | 1828 | John Quincy Adams | National Republican |
# Selecting all rows using a colon
elections.iloc[:, 0:3]
Year | Candidate | Party | |
---|---|---|---|
0 | 1824 | Andrew Jackson | Democratic-Republican |
1 | 1824 | John Quincy Adams | Democratic-Republican |
2 | 1828 | Andrew Jackson | Democratic |
3 | 1828 | John Quincy Adams | National Republican |
4 | 1832 | Andrew Jackson | Democratic |
... | ... | ... | ... |
177 | 2016 | Jill Stein | Green |
178 | 2020 | Joseph Biden | Democratic |
179 | 2020 | Donald Trump | Republican |
180 | 2020 | Jo Jorgensen | Libertarian |
181 | 2020 | Howard Hawkins | Green |
182 rows × 3 columns
elections.iloc[[1, 2, 3], 1]
1 John Quincy Adams 2 Andrew Jackson 3 John Quincy Adams Name: Candidate, dtype: object
# Extracting the value at row 0 and the second column
elections.iloc[0,1]
'Andrew Jackson'
Context-dependent Extraction using []
¶
We could technically do anything we want using loc
or iloc
. However, in practice, the []
operator is often used instead to yield more concise code.
[]
is a bit trickier to understand than loc
or iloc
, but it achieves essentially the same functionality. The difference is that []
is context-dependent.
[]
only takes one argument, which may be:
- A slice of row integers.
- A list of column labels.
- A single column label.
If we provide a slice of row numbers, we get the numbered rows.
elections[3:7]
Year | Candidate | Party | Popular vote | Result | % | |
---|---|---|---|---|---|---|
3 | 1828 | John Quincy Adams | National Republican | 500897 | loss | 43.796073 |
4 | 1832 | Andrew Jackson | Democratic | 702735 | win | 54.574789 |
5 | 1832 | Henry Clay | National Republican | 484205 | loss | 37.603628 |
6 | 1832 | William Wirt | Anti-Masonic | 100715 | loss | 7.821583 |
If we provide a list of column names, we get the listed columns.
elections[["Year", "Candidate", "Result"]]
Year | Candidate | Result | |
---|---|---|---|
0 | 1824 | Andrew Jackson | loss |
1 | 1824 | John Quincy Adams | win |
2 | 1828 | Andrew Jackson | win |
3 | 1828 | John Quincy Adams | loss |
4 | 1832 | Andrew Jackson | win |
... | ... | ... | ... |
177 | 2016 | Jill Stein | loss |
178 | 2020 | Joseph Biden | win |
179 | 2020 | Donald Trump | loss |
180 | 2020 | Jo Jorgensen | loss |
181 | 2020 | Howard Hawkins | loss |
182 rows × 3 columns
And if we provide a single column name we get back just that column, stored as a Series
.
elections["Candidate"]
0 Andrew Jackson 1 John Quincy Adams 2 Andrew Jackson 3 John Quincy Adams 4 Andrew Jackson ... 177 Jill Stein 178 Joseph Biden 179 Donald Trump 180 Jo Jorgensen 181 Howard Hawkins Name: Candidate, Length: 182, dtype: object
Slido Exercises¶
example = pd.Series([4, 5, 6], index=["one", "two", "three"])
example[example > 4].values
array([5, 6])
df = pd.DataFrame({"c1":[1, 2, 3, 4], "c2":[2, 4, 6, 8]})
df.columns
Index(['c1', 'c2'], dtype='object')
weird = pd.DataFrame({"a":["one fish", "two fish"],
"b":["red fish", "blue fish"]})
weird
a | b | |
---|---|---|
0 | one fish | red fish |
1 | two fish | blue fish |