Native Python serialization
The following types can be pickled:
For our purposes, the list stops here. In reality, the following can also be pickled, but I do not recommend doing so for now. There are scenarios where pickling these things makes sense, but they are more advanced and we will not discuss them for now:
__dict__
or the result of calling __getstate__()
is picklable.{warning}
The `pickle` module **is not secure**. Only unpickle data you trust.
It is possible to construct malicious pickle data which will **execute arbitrary code during unpickling**. Never unpickle data that could have come from an untrusted source, or that could have been tampered with.
Consider signing data with hmac if you need to ensure that it has not been tampered with.
Safer serialization formats such as json may be more appropriate if you are processing untrusted data.
import pickle
pickle.dumps(1234, protocol=0)
b'I1234\n.'
pickle.dumps([1])
b'\x80\x04\x95\x06\x00\x00\x00\x00\x00\x00\x00]\x94K\x01a.'
a = [1, 1.5, "hello", {3, 4}, {'int': 9, 'real': 9.0, 'complex': 9j}]
with open('data.pkl', 'wb') as f:
pickle.dump(a, f)
with open('data.pkl', 'rb') as f:
b = pickle.load(f)
b
[1, 1.5, 'hello', {3, 4}, {'int': 9, 'real': 9.0, 'complex': 9j}]
The shelve
module provides a disk-stored object that behaves (mostly) like a dict, whose keys are strings and whose values are anything that can be pickled:
import shelve
x = 1234
with shelve.open('spam') as db:
db['eggs'] = 'eggs'
db['numbers'] = [1,2, 3, 9.99, 1j]
db['xx'] = x
%ls -l spam.*
-rw-r--r-- 1 jovyan jovyan 53 Nov 3 07:08 spam.bak -rw-r--r-- 1 jovyan jovyan 1030 Nov 3 07:08 spam.dat -rw-r--r-- 1 jovyan jovyan 53 Nov 3 07:08 spam.dir
{Note}
Do not rely on the shelf being closed automatically; always call `close()` explicitly when you don’t need it any more, or use `shelve.open()` as a context manager, as shown above.
with shelve.open('spam') as db:
e = db['eggs']
n = db['numbers']
print(f'{e = }')
print(f'{n = }')
e = 'eggs' n = [1, 2, 3, 9.99, 1j]
db = shelve.open('spam')
for var, data in db.items():
print(f'{var} = {data}')
eggs = eggs numbers = [1, 2, 3, 9.99, 1j] xx = 1234
db.close()
How to save and load NumPy objects provides more details, and all input/output APIs in numpy are described here.
As a minimum starter, you should know that:
.npy
files. These are portable across machines and versions of Numpy..npz
file.The relationship between npy
and npz
files is somewhat similar to that between single pickles and shelve objects in Python.
import numpy as np
a = np.array([1, 2, 3.4])
fname = 'arr.npy'
np.save(fname, a)
b = np.load(fname)
(a == b).all()
True
Multiple arrays (or scalar data) can be saved in a shelve-like object with the np.savez()
function, that writes .npz
files:
fname = 'arrays.npz'
np.savez(fname, a=a, b=np.random.normal(10), c=3.4)
arrays = np.load(fname)
arrays.files
['a', 'b', 'c']
arrays['a']
array([1. , 2. , 3.4])
arrays['c']
array(3.4)
JSON stands for JavaScript Object Notation - it is a human-readable format (it looks kind of like a Python dict; Jupyter notebooks are JSON files on-disk) that can represent native JavaScript types. In some cases it can be an alternative to Pickle, with the advantage of being natively portable to the Web and the JavaScript ecosystem. From the Python pickle docs, this quick comparison is useful for our purposes:
JSON is a text serialization format (it outputs unicode text, although most of the time it is then encoded to utf-8), while pickle is a binary serialization format;
JSON is human-readable, while pickle is not;
JSON is interoperable and widely used outside of the Python ecosystem, while pickle is Python-specific;
JSON, by default, can only represent a subset of the Python built-in types, and no custom classes; pickle can represent an extremely large number of Python types (many of them automatically, by clever usage of Python’s introspection facilities; complex cases can be tackled by implementing specific object APIs);
Unlike pickle, deserializing untrusted JSON does not in itself create an arbitrary code execution vulnerability.
import json
a = ['foo', {'bar': ['baz', None, 1.0, 2]}]
json.dumps(a)
'["foo", {"bar": ["baz", null, 1.0, 2]}]'
with open('test.json', 'w') as f:
json.dump(a, f)
with open('test.json', 'r') as f:
b = json.load(f)
b
['foo', {'bar': ['baz', None, 1.0, 2]}]
a == b
True
But be careful:
c = ['foo', {'bar': ('baz', None, 1.0, 2)}]
with open('test2.json', 'w') as f:
json.dump(c, f)
with open('test2.json', 'r') as f:
d = json.load(f)
c == d
False
d
['foo', {'bar': ['baz', None, 1.0, 2]}]
from IPython.display import JSON
JSON(c)
<IPython.core.display.JSON object>
GeoJSON: the meaning of a schema.
classroom = {
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [-122.25915, 37.87125]
},
"properties": {
"name": "Wheeler Hall Auditorium"
}
}
JSON(classroom)
<IPython.core.display.JSON object>
from IPython.display import GeoJSON
GeoJSON(classroom)
<IPython.display.GeoJSON object>
Some useful performance comparisons regarding various ways of saving dataframes.
from pathlib import Path
import pandas as pd
df = pd.read_csv(Path.home()/"shared/climate-data/monthly_in_situ_co2_mlo_cleaned.csv")
df
year | month | date_index | fraction_date | c02 | data_adjusted_season | data_fit | data_adjusted_seasonally_fit | data_filled | data_adjusted_seasonally_filed | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1958 | 1 | 21200 | 1958.0411 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
1 | 1958 | 2 | 21231 | 1958.1260 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
2 | 1958 | 3 | 21259 | 1958.2027 | 315.70 | 314.43 | 316.19 | 314.90 | 315.70 | 314.43 |
3 | 1958 | 4 | 21290 | 1958.2877 | 317.45 | 315.16 | 317.30 | 314.98 | 317.45 | 315.16 |
4 | 1958 | 5 | 21320 | 1958.3699 | 317.51 | 314.71 | 317.86 | 315.06 | 317.51 | 314.71 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
763 | 2021 | 8 | 44423 | 2021.6219 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
764 | 2021 | 9 | 44454 | 2021.7068 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
765 | 2021 | 10 | 44484 | 2021.7890 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
766 | 2021 | 11 | 44515 | 2021.8740 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
767 | 2021 | 12 | 44545 | 2021.9562 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
768 rows × 10 columns
df.to_feather("co2.fth")
%ls -l co2*
-rw-r--r-- 1 jovyan jovyan 32218 Nov 3 07:10 co2.fth
df2 = pd.read_feather("co2.fth")
df2
year | month | date_index | fraction_date | c02 | data_adjusted_season | data_fit | data_adjusted_seasonally_fit | data_filled | data_adjusted_seasonally_filed | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1958 | 1 | 21200 | 1958.0411 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
1 | 1958 | 2 | 21231 | 1958.1260 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
2 | 1958 | 3 | 21259 | 1958.2027 | 315.70 | 314.43 | 316.19 | 314.90 | 315.70 | 314.43 |
3 | 1958 | 4 | 21290 | 1958.2877 | 317.45 | 315.16 | 317.30 | 314.98 | 317.45 | 315.16 |
4 | 1958 | 5 | 21320 | 1958.3699 | 317.51 | 314.71 | 317.86 | 315.06 | 317.51 | 314.71 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
763 | 2021 | 8 | 44423 | 2021.6219 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
764 | 2021 | 9 | 44454 | 2021.7068 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
765 | 2021 | 10 | 44484 | 2021.7890 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
766 | 2021 | 11 | 44515 | 2021.8740 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
767 | 2021 | 12 | 44545 | 2021.9562 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 | -99.99 |
768 rows × 10 columns
Here is a nice introduction to HDF5 from our NERSC friends, and this is a good intro tutorial with code examples. The docs for the h5py Python library have more techincal details.
In brief (oversimplifying, but OK for our purposes):
{Note}
When we say NetCDF, we will strictly mean NetCDF4. There's an older version 3 that wasn't based on HDF5, and that we will not discuss further.
Today, most NetCDF files you encountered use the HDF5 binary format for storage, but as of 2020 NetCDF data can also be stored using the Zarr format that is more suited for cloud storage than HDF5, which was mostly designed for supercomputers.
So, the picture is:
h5
or zarr
, but for larger data it does.from pathlib import Path
import xarray as xr
DATA_DIR = Path.home()/Path('shared/climate-data')
ds = xr.open_dataset(DATA_DIR / "era5_monthly_2deg_aws_v20210920.nc")
ds
<xarray.Dataset> Dimensions: ( time: 504, latitude: 90, longitude: 180) Coordinates: * time (time) datetime64[ns] ... * latitude (latitude) float32 ... * longitude (longitude) float32 ... Data variables: (12/15) air_pressure_at_mean_sea_level (time, latitude, longitude) float32 ... air_temperature_at_2_metres (time, latitude, longitude) float32 ... air_temperature_at_2_metres_1hour_Maximum (time, latitude, longitude) float32 ... air_temperature_at_2_metres_1hour_Minimum (time, latitude, longitude) float32 ... dew_point_temperature_at_2_metres (time, latitude, longitude) float32 ... eastward_wind_at_100_metres (time, latitude, longitude) float32 ... ... ... northward_wind_at_100_metres (time, latitude, longitude) float32 ... northward_wind_at_10_metres (time, latitude, longitude) float32 ... precipitation_amount_1hour_Accumulation (time, latitude, longitude) float32 ... sea_surface_temperature (time, latitude, longitude) float32 ... snow_density (time, latitude, longitude) float32 ... surface_air_pressure (time, latitude, longitude) float32 ... Attributes: institution: ECMWF source: Reanalysis title: ERA5 forecasts
%%time
file_aws = "https://mur-sst.s3.us-west-2.amazonaws.com/zarr-v1"
ds_sst = xr.open_zarr(file_aws, consolidated=True)
ds_sst
CPU times: user 1.28 s, sys: 119 ms, total: 1.4 s Wall time: 3.18 s
<xarray.Dataset> Dimensions: (time: 6443, lat: 17999, lon: 36000) Coordinates: * lat (lat) float32 -89.99 -89.98 -89.97 ... 89.97 89.98 89.99 * lon (lon) float32 -180.0 -180.0 -180.0 ... 180.0 180.0 180.0 * time (time) datetime64[ns] 2002-06-01T09:00:00 ... 2020-01-2... Data variables: analysed_sst (time, lat, lon) float32 dask.array<chunksize=(5, 1799, 3600), meta=np.ndarray> analysis_error (time, lat, lon) float32 dask.array<chunksize=(5, 1799, 3600), meta=np.ndarray> mask (time, lat, lon) float32 dask.array<chunksize=(5, 1799, 3600), meta=np.ndarray> sea_ice_fraction (time, lat, lon) float32 dask.array<chunksize=(5, 1799, 3600), meta=np.ndarray> Attributes: (12/47) Conventions: CF-1.7 Metadata_Conventions: Unidata Observation Dataset v1.0 acknowledgment: Please acknowledge the use of these data with... cdm_data_type: grid comment: MUR = "Multi-scale Ultra-high Resolution" creator_email: ghrsst@podaac.jpl.nasa.gov ... ... summary: A merged, multi-sensor L4 Foundation SST anal... time_coverage_end: 20200116T210000Z time_coverage_start: 20200115T210000Z title: Daily MUR SST, Final product uuid: 27665bc0-d5fc-11e1-9b23-0800200c9a66 westernmost_longitude: -180.0
{Warning}
The above picture is incomplete...
ds = xr.open_dataset("data/test_hgroups.nc")
ds
<xarray.Dataset> Dimensions: (recNum: 74) Dimensions without coordinates: recNum Data variables: UTC_time (recNum) object '2012-03-04 03:54:19' ... '2012-03-04 04:24:10'
import netCDF4 as nc
dsn = nc.Dataset("data/test_hgroups.nc")
dsn
<class 'netCDF4._netCDF4.Dataset'> root group (NETCDF4 data model, file format HDF5): dimensions(sizes): recNum(74) variables(dimensions): <class 'str'> UTC_time(recNum) groups: mozaic_flight_2012030403540535_ascent, mozaic_flight_2012030321335035_descent, mozaic_flight_2012030403540535_descent, mozaic_flight_2012030412545335_ascent, mozaic_flight_2012030419144751_ascent, mozaic_flight_2012030319051051_descent, mozaic_flight_2012030421382353_ascent
ds4 = xr.open_dataset("data/test_hgroups.nc",
group="mozaic_flight_2012030403540535_ascent")
ds4
<xarray.Dataset> Dimensions: (recNum: 74) Dimensions without coordinates: recNum Data variables: air_press (recNum) float64 1.008e+05 9.851e+04 ... 2.31e+04 2.275e+04 CO (recNum) float64 216.0 189.0 167.0 159.0 ... 80.0 77.0 85.0 73.0 O3 (recNum) float64 -99.0 -99.0 -99.0 -99.0 ... -99.0 -99.0 -99.0 altitude (recNum) float64 46.4 237.0 387.1 ... 1.087e+04 1.097e+04 lat float64 32.01 lon float64 34.89 Attributes: airport_dep: TLV flight: 2012030403540535 level: calibrated airport_arr: FRA mission: mozaic time_dep: 2012-03-04 03:54:05 aircraft: 3 link: http://www.iagos.fr/extract phase: ascent time_arr: 2012-03-04 08:01:44