
Regular Expressions:
List of all metacharacters: . ^ $ * + ?] [\ | () { }

Operator Description
. Matches any character except \n

\ Escapes metacharacters

| Matches expression on either side of expression; has lowest priority of any operator

\d, \w, \s Predefined character group of digits (0-9), alphanumerics (a-z, A-Z, 0-9, and underscore), or
whitespace, respectively

\D, \W, \S Inverse sets of \d, \w, \s, respectively

* Matches preceding character/group zero or more times

? Matches preceding character/group zero or one times

+ Matches preceding character/group one or more times

*?, +? Applies non-greedy matching to * and +, respectively

{m} Matches preceding character/group exactly m times

{m, n} Matches preceding character/group at least m times and at most n times; if either m or n are
omitted, set lower/upper bounds to 0 and ∞, respectively

^, $ Matches the beginning and end of the line, respectively

[] Matching group used to match any of the specified characters or range (e.g. [abcde]) [a-e])

() Capturing group used to create a sub-expression

[^] Invert matching group; e.g. [^a-c] matches all characters except a, b, c

Regex String Matching:

Function Description
re.match(pattern, string) Returns a match if zero or more characters at beginning

of string matches pattern, else None
re.search(pattern, string) Returns a match if zero or more characters anywhere

in string matches pattern, else None
re.findall(pattern, string) Returns a list of all non-overlapping matches

of pattern in string (if none, returns empty list)
re.sub(pattern, repl, string) Returns string after replacing all occurrences

of pattern with repl

Data 100 Regular Expressions

(Spring 2022)

Here’s a complete list of metacharacters:

. ^ $ * + ? { } [] \ | ()

Some reminders on what each can do (this is not exhaustive):

"^" matches the position at the beginning of string

(unless used for negation "[^]")

"$" matches the position at the end of string char-

acter.

"?" match preceding literal or sub-expression 0 or 1

times.

"+" match preceding literal or sub-expression one or

more times.

"*" match preceding literal or sub-expression zero or

more times

"." match any character except new line.

"[]" match any one of the characters inside, ac-

cepts a range, e.g., "[a-c]".

"()" used to create a sub-expression

"\d" match any digit character. "\D" is the comple-

ment.

"\w" match any word character (letters, digits, un-

derscore). "\W" is the complement.

"\s" match any whitespace character including tabs

and newlines. \S is the complement.

"*?" Non-greedy version of *. Not fully discussed in

class.

"\b" match boundary between words. Not discussed

in class.

"+?" Non-greedy version of +. Not discussed in

class.

"{m,n}" The preceding element or subexpression

must occur between m and n times, inclusive.

Some useful re package functions:

re.split(pattern, string) split the string at

substrings that match the pattern. Returns

a list.

re.sub(pattern, replace, string) apply the

pattern to string replacing matching sub-

strings with replace. Returns a string.

re.findall(pattern, string) Returns a list of all

matches for the given pattern in the string.

1

