
Regular Expressions:  
List of all metacharacters: . ^ $ * + ? ] [ \ | ( ) { } 

Operator Description 
. Matches any character except \n 

\ Escapes metacharacters 

| Matches expression on either side of expression; has lowest priority of any operator 

\d, \w, \s Predefined character group of digits (0-9), alphanumerics (a-z, A-Z, 0-9, and underscore), or 
whitespace, respectively 

\D, \W, \S Inverse sets of \d, \w, \s, respectively 

* Matches preceding character/group zero or more times 

? Matches preceding character/group zero or one times 

+ Matches preceding character/group one or more times 

*?, +? Applies non-greedy matching to * and +, respectively 

{m} Matches preceding character/group exactly m times 

{m, n} Matches preceding character/group at least m times and at most n times; if either m or n are 
omitted, set lower/upper bounds to 0 and ∞, respectively 

^, $ Matches the beginning and end of the line, respectively 

[ ] Matching group used to match any of the specified characters or range (e.g. [abcde]) [a-e]) 

( ) Capturing group used to create a sub-expression 

[^ ] Invert matching group; e.g. [^a-c] matches all characters except a, b, c 

 
Regex String Matching: 

Function Description 
re.match(pattern, string) Returns a match if zero or more characters at beginning 

of string matches pattern, else None 
re.search(pattern, string) Returns a match if zero or more characters anywhere 

in string matches pattern, else None 
re.findall(pattern, string) Returns a list of all non-overlapping matches 

of pattern in string (if none, returns empty list) 
re.sub(pattern, repl, string) Returns string after replacing all occurrences 

of pattern with repl 
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Here’s a complete list of metacharacters:

. ^ $ * + ? { } [ ] \ | ( )

Some reminders on what each can do (this is not exhaustive):

"^" matches the position at the beginning of string

(unless used for negation "[^]")

"$" matches the position at the end of string char-

acter.

"?" match preceding literal or sub-expression 0 or 1

times.

"+" match preceding literal or sub-expression one or

more times.

"*" match preceding literal or sub-expression zero or

more times

"." match any character except new line.

"[ ]" match any one of the characters inside, ac-

cepts a range, e.g., "[a-c]".

"( )" used to create a sub-expression

"\d" match any digit character. "\D" is the comple-

ment.

"\w" match any word character (letters, digits, un-

derscore). "\W" is the complement.

"\s" match any whitespace character including tabs

and newlines. \S is the complement.

"*?" Non-greedy version of *. Not fully discussed in

class.

"\b" match boundary between words. Not discussed

in class.

"+?" Non-greedy version of +. Not discussed in

class.

"{m,n}" The preceding element or subexpression

must occur between m and n times, inclusive.

Some useful re package functions:

re.split(pattern, string) split the string at

substrings that match the pattern. Returns

a list.

re.sub(pattern, replace, string) apply the

pattern to string replacing matching sub-

strings with replace. Returns a string.

re.findall(pattern, string) Returns a list of all

matches for the given pattern in the string.
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