Data 100
Lectfure 23:
Web Scraping Technologies

() ﬁ v—‘
[] S——

Ex 1. We are interested In
Men's 1500m world
records — found in ©
Wikipedia table

https://en.wikipedia.org/wiki/ 1500 metres world record pro
aression

W|I<|ped|0 Page

C ff & https://en.wikipedia.org/wiki/1500_metres_world_record_progression ke
LV
N .
wixipepiA 1500 metres world record progression
The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page The 1500-metre run became a standard racing distance in Europe in the late 19th century, perhaps as a metric version of the mile,
Contents a popular running distance since at least the 1850s in English-speaking countries.!"]
Featured content
Current events A distance of 1500 m sometimes is called the "metric mile".

Random article

o The French had the first important races over the distance, holding their initial championship in 1888. When the Olympic games
Donate to Wikipedia

were revived in 1896, metric distances were run, including the 1500. However, most of the best milers in the world were absent, and

Wikipedia store
i the winning time of 4:33 1/5 by Australian Edwin Flack was almost 18 seconds slower than the amateur mile record, despite the fact
lme}:::;on the mile is 109 metres longer than the 1500 metres.
About Wikipedia The 1900 Olympics and 1904 Olympics showed improvements in times run, but it was not until the 1908 Olympics that a meeting of
Community portal the top milers over the distance took place, and not until the 1912 Olympics that a true world-class race over the distance was run.?!
Recent changes

Contact page The distance has now almost completely replaced the mile in major track meets.

Tools Contents [hide]
What links here 1 Men (outdoors)
Related changes 1.1 Pre-IAAF =]
gs::::l f::ges 1.2 1AAF era Paavo Nurmi breaks the 1,500 m &
world record in Helsinki in 1924,

Permanent link 2 Women (outdoors)

Page information 2.1 Pre-IAAF
Wikidata item 2.2 |IAAF era
Cite this page 3 References

4 Further readin
Print/export 9

Create a book
Download as PDF
Printable version

Men (outdoors) |edi]

Languages o Pre-IAAF [edit]
Frangais
=0 Time & Athlete +| Date = Place R
Italiano
Punees 4:243/5 | || || J. Borel (FRA) 1892

Table of run times and dates

> W e Wa n-l- -I- O SCra p e Time ¢ Auto ¢ Athlete ¢ Date ¢ Place ¢
. 3:55.8 B Abel Kiviat (USA) 1912-06-08 ' Cambridge, Massachusetts, USA
Th € TI mes an d d Q T €S 3:54.7 B John Zande;éy_‘l\(__E_) 1917-08-05 Stockholm, Sweden
Th CI T O p p e O r I n Th IS 3:52.6 wp= Paavo Nurmi (FIN) 1924-06-19 Helsinki, Finland
fable on the Web 3:51.0 I Otto Peltzer (GER) 1926-09-11 Berlin, Germany
p a g e 3:49.2 |) Jules Ladoumegue (FRA) 1930-10-05 Paris, France
3:49.2 J) Luigi Beccali (ITA) 1933-09-09 Turin, Italy
3:49.0 J | Luigi Beccali (ITA) 1933-09-17 Milan, Italy
3:48.8 = Bill Bonthron (USA) 1934-06-30 Milwaukee, USA
3:47.8 Jack Lovelock (NZL) 1936-08-06 Berlin, Germany
3:47.6 mmm Gunder Hagg (SWE) 1941-08-10 Stockholm, Sweden

3:45.8 B Gunder Hagg (SWE) 1942-07-17 Stockholm, Sweden

Ex 2. We are interested In
gas prices - available from
web forms on CA Energy
Commission’s site

https://ww?2.energy.ca.gov/almanac/iransportation data/g
asoline/margins/index cms.php

CA Energy Commission

%v share: £ W in & About Careers Contact Ev
CALIFORNIA
ENERGY COMMISSION
HOME PROCEEDINGS v RULES AND REGULATIONS v PROGRAMS AND TOPICS v FUNDING v DATA /

Home > DataandReports > EnergyAlmanac > TransportationEnergy > Estimated Gasoline Price Breakdown and Margins Details

Estimated 2019 Gasoline Price
Breakdown and Margins Details

Tables of Weekly Gas Prices

Oct 28

Distribution Costs, Marketing Costs and Profits
Crude Oil Costs

Refinery Cost and Profit

State Underground Storage Tank Fee

State and Local Tax

State Excise Tax

Federal Excise Tax

Retail Prices

Branded Unbranded

$0.690

$1.540

$0.950

$0.020

$0.087

$0.473

$0.184

$3.950

$0.790

$1.540

$0.860

$0.020

$0.087

$0.473

$0.184

$3.950

Oct 21

Branded Unbranded

Distribution Costs, Marketing Costs and Profits $0.610

Crude Oil Costs $1.500
Refinery Cost and Profit $1.160
State Underground Storage Tank Fee $0.020
State and Local Tax $0.089
State Excise Tax $0.473
Federal Excise Tax $0.184
Retail Prices $4.030

$0.660

$1.500

$1.100

$0.020

$0.089

$0.473

$0.184

$4.030

Want Data for Additional Years

Federal Excise Tax $0.184

Retail Prices $3.180

v Select Year Get different year

2018
2017
2016
mne Price: The average wholesale gasoline price i
2014 A . .
This average price is for a single day. The wholes
2013
2012 iranded Gasoline: Branded gasoline refers to fu
2071 vy fuel additives. Unbranded gasoline is not asso
20l it specialize is gasoline sales, and large superma
2009

7008 [PV S R R Sy R e B AN T DR, o MU B

Ex 3. We want to study
global climate models -
available from World Bank

World Bank REST API

Instructions for
how to
refrieve data
their data files

English Espaiol Frangais s Pycc

Home About Data Research Learning News Projects & Operations Publications Countrie!

Data

Climate Data API

« Developer Information

About the Climate Data API

The Climate Data API provides programmatic access to most of the climate data used on the World Bank’s Climate
Change Knowledge Portal. Web developers can use this API to access the knowledge portal’s data in real time to
support their own applications, so long as they abide by the World Bank’s Terms of Use.

About the Data

Except as noted, all the data in the Climate Data API are derived from 15 global circulation models (GCMs), the most
comprehensive physically-based models of climate change available and used by the Intergovernmental Panel on
Climate Change (IPCC) 4th Assessment Reports. The models simulate the response of the global climate system to
increasing greenhouse gas concentrations. The data in the Climate Data API have been aggregated to both the
country and basin levels, as explained below.

Note these data are modeled estimates of temperature and precipitation changes in different time periods under
different GCMs and scenarios. They include changes for future time periods and also as “backcasting” (model
representations of the past) set for past time periods. The latter should not be confused with any instrumental or
observed data.

Today

Data Scientists retrieve data from the Web
programmatically

» Pandas, BeautifulSoup, and Ixml libraries
» Formats: HTML, XML, and JSON

» Trees: XPath and BeautifulSoup

» HTTP — Get and Post, and REST APIs

HTTP — Hypertext Transter Protocol

HTTP

Hypertext Transfer Protocol

» Created at CERN by Tim Berners-Lee in 1989 as part of
the World Wide Web

» Started as a simple request-response protocol used by
web servers and browsers to access hypertext

> Widely used exchange data and provides services:
» Access webpage & submit forms
» Common API| to data and services across the internet

» Foundation of modern REST APIs

Request — Response Protocol

Client Server
F‘ Reques’r
ERE GET /wiki/1500 metres_world_record_progression HTTP/1.1
Ml HOST: ds100.org
Sl User-Agent: python-requests/2.22.0
ol Accept-Encoding: gzip, deflate
5@ Accept: */*
Connection: keep-alive

Remaining Header Lines

> Key-value pairs

First line contains:

GET /wiki/1500..progression HTTP/1.1

> amethod, e.g., GET or POST » Specify arange of attributes
» a URL or path to the document Optional Body
> the protocol and ifs version > send extra parameters & data

Request — Response Protocol

Client Server

Request |

Response

» First line contains status
code
» Key-Value Pair Lines
» Data properties
» Body
» Returned data
» HTML/JSON/Bytes

.wikipedia.org/wiki/1500_metres_world_record_progression | I . O W e b B rOWS e r

Time ¢ Auto ¢ Athlete ¢+ Date < Place
. 1912-06- | Cambridge, Massachusetts, United Filter Hide data URLs
3:55.8 == Abel Kiviat (USA) 08 States Al XHR JS CSS Img Media Font Doc WS Manifest Other
| 50000ms 100000 ms 150000 ms ~ 200000ms 250000 ms 300000 ms 350000 ms ~ 400000ms 4
1917-08-
3:54.7 === John Zander (SWE) Stockholm, Sweden
05
. 1924-06- T .) -
3:52.6 _'_ Paavo Nurmi (FIN) Helsmkl, Finland Name X Headers Preview Response Cookies Timing
19 | | 1500_metres_world_record_p... General
1926-09- . B Paavo_Nurmi_breaks_1%2C... Request URL: https://en.wikipedia.org/wiki/1500_m
3:51.0 B Otto Peltzer (GER) 1 Berlin, Germany 11 45px-Flag_of_France.svg.png etres_world_record_progression

= 46px-Flag_of_the_United_Sta...

Request Method: GET
B B Jules 1930-10- | 46px-Flag_of_the_United_Kin...

3:49.2 Paris, France Status Code: @ 304
==/ 46px-Flag_of_Sweden.svg.pn
Ladoumegue (FRA) 05 = “opx-riag ol 9-png Remote Address: 198.35.26.96:443
+ 46px-Flag_of_Finland.svg.png
1933-09 . Referrer Policy: no-referrer-when-downgrade
Vo= = 46px-Flag_of_Germany.svg.png

3:49.2 [| Luigi Beccali (ITA) Turin, Italy 1
09 1| 45px-Flag_of_ltaly.svg.png » Response Headers (24) R es p O N S e }
= 46px-Flag_of New_Zealand.s... ‘

1933-09- v Request Headers

3:49.0 B B Luigi Beccali (1TA) Milan, Italy =] 46px-Flag_of Australia_%28... . thority: en.wikipedia.org
17 = 46px-Flag_of_Hungary_%?28... R e q U eST

:method: GET
= 40px-Flag_of_Denmark.svg.png

. 1934-06- . . :path: /wiki/1500_metres_world_record_progression
3:48.8 E= Bj|| Bonthron (USA) Milwaukee, United States »~| 45px-Flag_of_the_Czech_Re... :scheme: https
30 = 45px-Flag_of_Tanzania.svg.png ’ ’
- accept: text/html,application/xhtml+xml,applicatio
1936-08- = 45px-Flag_of_Morocco.svg.png /xals 0=0.9, 1 webp, | y y 0.8 u
H 10=9.9, ’ »¥/%;Q=0.8,
3:47.8 Jack Lovelock (NZL) Berlin, Germany « | 45px-Flag_of Algeria.svg.png n/xml;q=0.9, inage/webp, inage/apng, */*; 4=0.8,appli
06 . cation/signed-exchange;v=b3

= 46px-Flag_of_the_Soviet_Uni...

4044 Nno lnnd nhnlan~_An® mmadidan_

accept-encoding: gzip, deflate, br

Request Types (Main Types)

» GET - gefinformation

» Parameters passed in URI (limited to ~2000 characters)
» /app/user_info.json?username=mejoeyg&version=now
» Request body is typically ignored

» Should not have side-effects (e.g., update user info)

» Can be cached in on server, network, or in browser (bookmarks)

» POST - send information
» Parameters passed in URI and BODY
> May and typically will have side-effects
» Often used with web forms.
» Related requests: PUT, DELETE

Response Status Codes

> 100s Informational - Communication continuing, more input
expected from client or server

> 200 Success - e.g., 200 - general success;

» 300s Redirection or Conditional Action — requested URL is
located somewhere else.

> 400s Client Error

> 404 indicates the document was not found

» 403 indicates that the server understood the request but refuses to
authorize it

> 500s Internal Server Error or Broken Request — error on the
server side

Managing Requests: requests Library

GET Method
res = requests.get(url)

Access the request status with res.status_code

Access the request method with res.request.method
Access the request header with res.request.headers

Access the response header with res.headers
Access the response body (content) with res.content

Getting data from tables

on the Web

Starting Simple with Pandas

Pandas read himl

» Loads tables from web pages
> Looks for <table></table> tags
» Table needs to be well formaited
» Returns a list of DataFrames

» Can load directly from URL

» Carefull Data changes. Save a copy on the Web page
contents with your analysis

> You will often need to do additional fransformations to
prepare the data

TML —
vperliext Markup Language

Simple HTML Document

<html xmlns="http://www.w3.0rg/1999/xhtml" {
xml:lang="en" lang="en">] :
' Simple HTML page
<title>Example</title>
</head> !
<body> A paragraph about the table below.
<h2>Simple HTML page</h2>
<p> A <i>paragraph</i> about the table

below. .
</p> X Y
<table id="mydata" border="1")
cellpadding="4">
<tr><th>X</th><th>Y</th></tr> $1 25 17
<tr><td>$1.25</td><td>17</td></tr>
<tr><td>$2.50</td><td>25</td></tr> $2.50 |25
<tr><td>$2.00</td><td>22</td></tr> |
</table>

</html>

Many Tables on the 1500m page

Time ¢ Auto ¢ Athlete ¢ Date = Place :

3:55.8 m= Abel Kiviat (USA) 1912-06-08 Cambridge, Massachusetts, usa 1 NIS IS The
3:54.7 == john Zander (SWE) 1917-08-05 Stockholm, Sweden Table we
3:52.6 wf== Paavo Nurmi (FIN) 1924-06-19 Helsinki, Finland wda n-l-.
3:51.0 M Otto Peltzer (GER) 1926-09-11 Berlin, Germany

3:49.2 B J§ Jules Ladoumegue (FRA) | 1930-10-05 Paris, France

3:49.2 § J Luigi Beccali (ITA) 1933-09-09 Turin, Italy

3:49.0 J J Luigi Beccali (ITA) 1933-09-17 Milan, Italy

3:48.8 B Bill Bonthron (USA) 1934-06-30 Milwaukee, USA

3:47.8 #al Jack Lovelock (NZL) 1936-08-06 Berlin, Germany

3:47.6 Bam Gunder Hagg (SWE) 1941-08-10 Stockholm, Sweden

3:45.8 E e Gunder Hagg (SWE) 1942-07-17 Stockholm, Sweden

Use Browser to Examine page source

168 <p>To June 21, 2009, the IAAF has ratified 38 world records in the ¢ 7, 4. A Vv | x !
class="reference">[3]</sup></p> ‘ er‘ ’ E; ‘ ’

169 <table class="wikitable sortable"” style="font-size:95%; text-align:center;">

170 | <tr>

| Srzines/in> HTML for the
172 | <th>Auto</th>

1732 <th>Athlete</th>

174 <th>Date</th>

175 <th>Place</th> O e We

176 | </tr>

177 | <tr>

178 | <td>3:55.8</td> WO n'l'
<td></td> .

180 | <td align="left"><img alt=""
src="//upload.wikimedia.org/wikipedia/en/thumb/a/a4/Flag_of_the_United_States.svg/23px-—
Flag_of_the United_States.svg.png"” width="23" height="12" class="thumbborder”
srcset="//upload.wikimedia.org/wikipedia/en/thumb/a/a4/Flag_of_the_United_ States.svg/35px-
Flag of the United States.svg.png 1.5x,

L]
//upload.wikimedia.org/wikipedia/en/thumb/a/a4/Flag_of the United States.svg/46px-— N O 'I-I < : e 'I- h e
Flag_of_the_United_ States.svg.png 2x" data-file-width="1235" data-file-height="650" /> Abel Kiviat (<abbr Z

title="United States">USA</abbr>)</td>

181 | <td>1912-06-08</td>

182 | <td>Cambridge,
Massachusetts, United States</td>

183 | </tr>

184 | <tr>

185 <td>3:54.7</td>

186 | <td></td>

d
width="23" height="14"
srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4c/Flag_of_ Sweden.svg/35px-Flag_of #weden.svg.png
1.5x,_J//upload.wikimedia.org/wikipedia/en/thumb/4/4c/Flaq_of_ Sweden.svg/46px-Flag of Jweden.svg.png 2x"
data-file-width="1600" data-file-height="1000" /> <a href="/wiki/John " title="John
Zander">John Zander (<abbr title="Sweden">SWE</abbr>)</td>

188 <td>1917-08-05</td>

189 | <td>Stockholm,
Sweden</td>

190 | </tr>

Pandas exiracts tables from HTML
documents as a list of data frames

tables = pd.read html(url)

len(tables)

6

tables[1].head()

Time Auto Athlete Date Place
0 3:55.8 NaN Abel Kiviat (USA) 1912-06-08 Cambridge, Massachusetts, United States
1 3:54.7 NaN John Zander (SWE) 1917-08-05 Stockholm, Sweden
2 3:52.6 NaN Paavo Nurmi (FIN) 1924-06-19 Helsinki, Finland
3 3:51.0 NaN Otto Peltzer (GER) 1926-09-11 Berlin, Germany
4 3:49.2 NaN Jules Ladoumegue (FRA) 1930-10-05 Paris, France

racetime

235

230

225

220

215

210

205

Clean and Transform Data

> Need times in
seconds

> Some fimes have +-
signs, e.qg., 3:42.8+

» Dates need to be
converted into date
format

H

1910

1920

1930

1940

1950

newDate

1960

1970 1980 1990 2000

XML

eXtensible Markup Language

HTML/XML/JSON

» Most services will exchange data in XML and/or JSON

» Whye
» Descriptive
» Can maintain meta-data
» Extensible
» Organization can change and maintain compatibility
» Human readable
> Useful for debugging and provides a common interface
» Machine readable
> A wide range of technologies for parsing

<
<
<
<
<
<

AANANANANA

>Bloodroot</ >
>Sanguinaria canadensis</
>4</ >
>Mostly Shady</ >
currency="USD">$2.44</
>031599</

>Columbine</ >
>Aquilegia canadensis</
>3</ >
>Mostly Shady</ >
currency="USD">$9.37</
>030699</

>Marsh Marigold</ >
>Caltha palustris</
>4</ >
>Mostly Sunny</ >
currency="CAD">$6.81</
>051799</

XML Is o
standard for
semantic,
hierarchical
representation
of data

Syntax

The basic unit of XML code is called an
“element” or “node”

Each Node has a start fag and end tag

<zone>?</zone>
Start tag End tag

|
Content

Syntax: Nesting

A node may contain other nodes (children) in
addition to plain text content.

Start tag
/ Content consists of

<plant type='a'> two nodes
<zone>4</zone>
<light>Mostly Shady</light> , ,

Indentation is not

</plant> needed. It simply

End tag shows the nestfing

Syntax: Empty Nodes

These two nodes
<plant> are empty

Both formats are
<zone></ZV acceptable
<light/>

</plant>

Syntax: Attributes

Nodes may have attributes (and attribute
values)

The attribute named type

has a value of “a”
/ This empty node

<plant type='a'> has two attributes:

<zone></20ne>/ source and class

<light source="2" class="new"/>

</plant>

Syntax: Comments

Comments can appear anywhere

Two comments

<plant>
<!l—— elem with content -->
<zone>4 <!—— a second comment --></zone>

<light>Mostly Shady</light>

</plant>

Well-formed XML

» An element must have both an open and
closing tag. However, if it is empty, then it can
be of the form <tagname/>.

» Tags must nest properly.
» Bad!: <plant><kind></plant></kind>

» Tag names are case-sensitive; start and end tags
must match exactly.

» No spaces are allowed between < and tag
name.

» Tag names must begin with a lefter and contain
only alphanumeric characters.

Well-formed XML:

> All attributes must appear in quotes:

"value"

name

» Isolated markup characters must be specified via entity
references. < is specified by s1t; and > is specified by
>.

> All XML documents must have one roof node that
contains all the other nodes.

XHTML: Extensible Hypertext Markup Language

» HTML is an XML-"like" structure = Pre-dated XML

» HTML is often not well-formed, which makes it difficult to parse
and locate content,

» Special parsers “fix” the HTML to make it well-formed
» Results in even worse HTML

» xHTML was intfroduced to bridge HTML and XML

» Adopted by many webpages
» Can be easily parsed and queried by XML tools

DOM — Document Object

Model

A tree representation

DOM: Document Object Model

>Bloodroot</ > > TI’GCIT XML & HTML as d Tree

>Sanguinaria canadensis</

>4</z0ne> > Fits XML and well-formed HTML

>Mostly Shady</ >

currency="USD">$2.44</

>031599</ > Visual containment =
>Columbine</ > C h I | d re n
>Aquilegia canadensis</
ToMastly Shady</Light> > Manipulated dynamically
currency="USD">$9.37< . .
S40695</ avarlep using JavaScript
N » Parsing in Python - Selenium +

Shotanicatacaltha palustrise/bo Headless Chrome ... (out of
: >:;éstly>5unny</ > S(:()F)EB)
< currency="CAD">$6.81</
< >051799</

Tree terminology

>

>

There is only one root (AKA document node) in the free,
and all other nodes are contained within if.

We think of these other nodes as descendants of the
root node.

We use the language of a family tree to refer to
relationships between nodes.
» parents, children, siblings, ancestors, descendants

The terminal nodes in a tree are also known as leaf
nodes. Text content always falls in a leaf node.

>Bloodroot</ S
>Sanguinaria canadensis</
>4</ >
>Mostly Shady</ >
currency="USD">$2.44</
>@031599</

<
<
<
<
<
<

>Columbine</ >
>Aquilegia canadensis</
>3</ >
>Mostly Shady</ >
currency="USD">$9.37</ (:C]T(JIC)Q;
>030699</

AANANAANA

>Marsh Marigold</ >
>Caltha palustris</
>4</ >
>Mostly Sunny</ >
currency="CAD">$6.81</
>051799</

AANANANANA

e G

Bloodroof Sangui... 4 Mostly... $2.44 031599

Four Tasks

1. Retrieve common names of all plants
2. Retrieve plants that grow in zone 4
3. Retrieve common names of plants that grow in zone 4

4. Retrieve prices of plants whose prices are listed in USD

Beauftitul Soup

Locate nodes and content in a well-formed XML document

c_nodes = soup.find all('common')

for c in c_nodes:
print(c.string)

Bloodroot catalog
Columbine

S, o
T) @ e

Sangui... | 4 I Mostly... | $2.44 031599 Label... | 2 I Shade | $3.02 02299

zone4 = soup.find all('zone', text = "4") |

zone4 5

[<zone>4</zone>, <zone>4</zone>]

zone4 plants = []
for z in zone4:

zoned4 plants.append(z.parent)

O D CEA R

Bloodroot || Sangui... Mostly... |$2~44 031599 Cardinal || Label... | 2 IShode |$3.02 02299

zone4 names = [] .
for z in zone4: 5 .
zone4 names.append(z.parent.common.string) ’

zone4 names
['Bloodroot', 'Marsh Marigold'] 4,

031599 Cardinal || Label... | 2 IShode |

us_price nodes = soup.find all('price', currency="USD")
prices = []

. . 2.
for p in us_price nodes:
prices.append(p.string)

prices
['$2.44', '$9.37']

& &
CEE o D BT i

'

031599 Cardinal || Label... | 2 IShOde |$3.02 02299

Bloodroot || Sangui... | 4 IMos’rIy...

XPath

Locate nodes and content in a well-formed XML document

What is XPath@¢

>

Extraction tool designed for locating content in an
XML/HTML file

Uses the DOM hierarchy of a well-formed XML document
to specify the desired chunks to extract

An XPath expression is a location path that is made up of
location steps separated by forward slash /

Syntax is similar to but more powerful than the way files
are located in a hierarchy of directories in a computer
file system

Four Tasks

1. Retrieve common names of all plants
2. Retrieve plants that grow in zone 4
3. Retrieve common names of plants that grow in zone 4

4. Retrieve prices of plants whose prices are listed in USD

//plant/common/text()

2. [
Retrieve 3.
common catalog
names of all
plants

7\
DerGene (or ()

Sangui.

7\
orcGfone G Gy et
[- [=1]-

22222222222222

Label...

//plant[zone/text() = '4’]

Retrieve Catdlog
plants that
grow in
zone 4

/catalog/plant/zone/ 1 [
3 ways fo locate 2. [0

//zone zone nodes

//plant/zone

What's the difference between these 3
XPath expressions?

— Any zone node that is a child of
plant and grandchild of catalog

— Any zone node anywhere in document are
located

— Any zone node that is a child of a plant
node anywhere in document

For this document these XPath expressions are equivalent

/catalog/plant/zone[text() = '4']/common/text()

//plant[zone/text() = ‘4’]/common/text()
//common]../zone/text() = ‘4’]/text() yellkey.com/large

) catalog
Retrieve
commaon ndmes

of plants that
grow in zone 4 @ @
/

//plant[zone/text() = ‘4’]/common/text() 2. [0

Retrieve
common names

of plants that
grow in zone 4

//price[@currency= ‘USD’]

Retrieve prices of catalog
plants whose

prices are listed

XPath syntax

» Each step has three parts:
> Axis (direction)
» Nodetest, and
» Predicate (optional)

XPath syntax — The axis

The axis is the direction to look (from the current location):

up the tree one level to the parent,

up the tree to all ancestors,

across to older siblings (fo the left),
across to younger siblings (tfo the right),
down the tree to child nodes,

down the tree to any descendant

YV VYV VY

Simple XPath axes have shortcuts

> ‘child”, which is the default and can be dropped,

» “descendant-or-self”, which looks anywhere down
the tree from current node(s) is abbreviated by *//"

> ‘self” is abbreviated with a.

> “parent” is abbreviated to ..

AXIS shortcuts

Child axis /catalog/plant/common
Descendant or self //common

Parent of common //common/..

XPath syntax — The nodetest

» The nodetest is typically a node name that you wish to
locate

» For our purposes, the nodetest will always be a node

name or text() for the text content or @attributename for
that value of an attribute

XPath expressions — The predicate

» The predicafe filters the qualifying nodes, i.e., takes a
subset of them.

» The predicate is optional and for our purposes will either be

» a number, which asks for a specific element, e.g. [2] for the
second node

» an attribute filter, e.qg.,

//plant[zone = “4” or light = “Shade”]

Ex 1. Wikipedia Tables

We use the requests library to access the web page.

http://docs.python-requests.org/en/master/

In [16]:
wikil500mURL = 'https://en.wikipedia.org/wiki/1500_ metres world record progression’
In [17]:

112 11 "
pagel500m_page response = requests.get(wikil500mURL) We geT the page
type(pagel500m_page response)

Out[17]: requests.models.Response

In [18]:
treel500m = html.fromstring(pagel500m page response.content) Creo‘l‘e an HTML
type(treel500m) “TrEBEBH

Out[18]: lxml.html.HtmlElement

We use the Ixml library to create a “tree” consisting of
page contents.

http://Ixml.de/tutorial.ntml /

Where In the page are
the datae

Exiract the run fimes

times_only =|tree1500m.xpath(‘//table[2]/tr/td[l]‘)|
print("length of times", len(times_only))
print(times_only[34].text content())

length of times 38
3:29.46

Exiract the dates

date column = treel500m.xpath('//table[2]/tr/td[4]") |
print("length of dates", len(date_column))
print(date_column[2].text content())

length of dates 38
1924-06-19

Extract the names

names_attr =|tree1500m.xpath('//table[Z]/tr/td[3]/a/@title')|
print("“length of names"”, len(names_attr))
print(names_attr)

length of names 38

['Abel Kiviat', 'John Zander', 'Paavo Nurmi', 'Otto Peltzer', 'Jul
'Bill Bonthron', 'Jack Lovelock', 'Gunder Higg', 'Gunder Higg', 'I
erner Lueg', 'Wes Santee', 'John Landy', 'Sandor Iharos', 'Laszlé
6lgyi', 'Olavi Salsola', 'Olavi Salonen', 'Stanislav Jungwirth',
Bayi', 'Sebastian Coe', 'Steve Ovett', 'Steve Ovett', 'Sydney Mare
ureddine Morceli', 'Noureddine Morceli', 'Hicham El Guerrouj']

HTTP & XPath

» We used HTTP to access the Wikipedia page

> We used XPath to extract the text content of interest
from the page

» We can also use Beautiful Soup (see notebook)
» Pandas can extract the table too (see notebook).

» When the data are not in a table then knowing XPath
(and Beautiful Soup) can be valuable.

Ex. 2: Acquiring Data
from Web forms

View Source

Federal Excise Tax

Retail Prices

v Select Year
2018
2017
2016

2015 ne Price: The average wholesale ga

2014
2013
2012
201

2010
2009
2008

$3.180

Get different year

ine price |
This average price is for a single day. Thew
iranded Gasoline: Branded gasoline refers to fu

'y fuel additives. Unbranded gasoline is not asso
it specialize is gasoline sales, and large superma

s, Marketing Costs, and Profits: The costs asso

<select> widget

<form action="%
<label for='year'

<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option

x.php' method='post'>
select name='year' id='year'>

POST
method

value='2016"'>Select Year</option>

value='2015'>2015</option>
value='2014'>2014</option>
value='2013"'>2013</option>
value='2012"'>2012</option>
value='2011"'>2011</option>
value='2010"'>2010</option>
value='2009'>2009</option>
value='2008"'>2008</option>
value='2007'>2007</option>
value='2006"'>2006</option>
value='2005"'>2005</option>
value='2004"'>2004</option>
value='2003"'>2003</option>
value='2002'>2002</option>
value='2001'>2001</option>
value='2000"'>2000</option>
value='1999'>1999</option>

<input> widget

/>

POST Method

» Requests the server to accept the entity enclosed in the
body of the request

» For example, the information in a web form to a data
handling process

res_gas = requests.post(posturl gas, data = dict(year = "2013"))

res_gas.status_code

200

Noftice the POST
method

res_gas.request.method

'"POST'

res_gas.request.headers
'python-requests/2.12.4', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-ali

{'User-Agent':
'application/x-www-form-urlencoded'}

ve', 'Content-Length': '9', ‘Content-Type':

The body of the POST
request contains the
form information

res gas.request.body

'year=2013"'

Ex 3. A REST
request for
climate
simulation
dato

REST - Representational
State Transfer

English Espaiiol Frangais s Pycc

Home About Data Research Learning News Projects & Operations Publications Countrie:

Climate Data API

« Developer Information

About the Climate Data API

The Climate Data API provides programmatic access to most of the climate data used on the World Bank’s Climate
Change Knowledge Portal. Web developers can use this API to access the knowledge portal’s data in real time to
support their own applications, so long as they abide by the World Bank’s Terms of Use.

About the Data

Except as noted, all the data in the Climate Data API are derived from 15 global circulation models (GCMs), the most
comprehensive physically-based models of climate change available and used by the Intergovernmental Panel on
Climate Change (IPCC) 4th Assessment Reports. The models simulate the response of the global climate system to
increasing greenhouse gas concentrations. The data in the Climate Data AP| have been aggregated to both the
country and basin levels, as explained below.

Note these data are modeled estimates of temperature and precipitation changes in different time periods under
different GCMs and scenarios. They include changes for future time periods and also as “backcasting” (model
representations of the past) set for past time periods. The latter should not be confused with any instrumental or
observed data.

The Basic Request

The Climate Data APl uses REST-based requests, in which the general form looks like this:
http://climatedataapi.worldbank.org/climateweb/rest/vl/country/type/var/start/end/IS03[.ext]
All boldface variables except for ext in this instance are required. Note that all climate data API requests begin with

http://climatedataapi.worldbank.org/climateweb/rest/, so for the sake of legibility, this portion of
the URL will be assumed and omitted in the remaining code samples in this documentation.

The Basic Request

The Climate Data AP| uses REST-based requests, in which the general form looks like this:
http://climatedataapi.worldbank.org/climateweb/rest/v1/country/type/var/start/end/IS03[.ext]
All boldface variables except for ext in this instance are required. Note that all climate data API requests begin with

http://climatedataapi.worldbank.org/climateweb/rest/, so for the sake of legibility, this portion of
the URL will be assumed and omitted in the remaining code samples in this documentation.

- . r

e is one of:
P Future
mavg Monthly average start end
var is one of: 2020 2039
annualavg Annual average
pr Precipitation (rainfall and assumed water equivalent), in millimeters 2040 2059
manom Average monthly ch
precipitation variable
tas Temperature, in degrees Celsius 2060 2079

annualanom Average annualcha 3
precipitation variables, and 1961-2000 for derived statistics.
2080 2099

World Bank Climate Data REST requests

» From documentation, we need to create requests with
URLs like:

wbc_url = "http://climatedataapi.worldbank.org/climateweb/rest/v1/country/
mavg/bccr_bcm?2_0/pr/2020/2039/CAN"

res wbc = requests.get(wbc_url)
res wbc.status code OQurrequest was The header tells us that

successful the body of the request

200 is JSSON formatted

res_wbc.headers

{'Date’': 'Tue, 28 Nov 2017 18:32:50 GMT', 'Content-Type': 'application/js
on', 'Transfer-Encoding': 'chunked’', 'Connection': 'keep-alive', 'Serve
r': 'Apache-Coyote/l.1', 'Access-Control-Allow-Origin': '*', 'Access-Cont
rol-Allow-Headers': 'X-Requested-With', 'Access-Control-Allow-Methods':
'GET'}

JSON: JavaScript Object Notation

Basic Type (String)

"Prof":

"Classes": [
"CS186", [Array]

{ "Name": "Datal@@", "Year": ([2017,2018]]}
1,

"Tenured": false
Object

"Prof": "Nolan", |“Key”: Value
"Classes": [

"Stat133", "Statl153", "Stat198", "Datal00"
1,

"Tenured": true

» Recursive datatype
» Datainside of data

> Value is a:

» A basic type:
> String
» Number
» frue/false
> Null

> Array of Values

» A dictionary of
key:Value pairs

Scraping Etiquette

Before you scrape:

» Check tosee if CSV, JSON, or XML version of an HTML
page are available — better to use those

» Check to see if there is a Python library that provides
stfructured access (e.g., tweetPy)

» Check that you have permission to scrape

If you do scrape:

» Be careful to not overburden the site with your requests
» Test code on small requests

» Save the results of each request so you don’t have to
repeat the request unnecessarily

