Data Science 100

Lecture 1/:

Feature Engineering
Prediction & Cross-validation
Regularization



Data Science Life Cycle

Context Design

Question () —p _ _ Data Collection

Refine Question to an . ~—  Data Cleaning

one answerable with .

data ‘ l Modelmg .
Test-train split

Loss function choice
1. Feature engineering
Transformations,

3. Model selection Dummy Variables
Best subset regression Word vectors

Cross-Validation
Regularization

Model evaluation
2. Prediction error




State of the Union

Addresses




The first State of the Union Address

* k%

State of the Union Address
George Washington
December 8, 1790

Fellow-Citizens of the Senate and House of Representatives:

In meeting you again I feel much satisfaction in being able to
repeat my congratulations on the favorable prospects which continue
to distinguish our public affairs. The abundant fruits of another
year have blessed our country with plenty and with the means of a
flourishing commerce.



How do we Analyze/Visualize Texte

> Derived variables encoding the presence or absence of
particular patterns

> Example: food safety violation descriptions - hasUnclean,
hasVermin

> Word frequencies which words are more common ...
» An approach for comparing speeches based on word usage



Text Encoding

» Generalization of one-hot-encoding for a string of text

» Oftenremove stop words (e.g., the, is, a...) that don’t contain
significant information

» Reduce similar words (e.g. meet, meeting, meets, met) to their
stem

» Pool all of the words in all speeches into a bag of words

“In meeting you
again I feel much ‘

"

satisfaction .

— satisfaction

© aardvark
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Word Frequency Vectors

» Encode text as a long vector of word counts
> Typically high dimensional and very sparse
» Word order information is lost... (is this an issue?)

» We have 226 speeches —
» each speech is turned info a word vector

» Row in a matrix with:
» 226 rows
» 23,127 columns — corresponding to the unique words in all speeches



State of the Union Addresses

» Dimensionality reduction: 23,127 columns - 2 columns

» Rather than look at projections and the Euclidean distance
between points, we define a special distance useful for word
vectors. It normalizes by the rarity of a word

term frequency/document frequency =
# times a word appears in doc / #docs contain word

Use this quantity and an approach similar to PCA to reduce each
speech to point in 24
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Feature Engineering

Keeping it Real




Feature Engineering

Feature Functions: b: X — RP
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» One-hot encoding: Categorical Data
state NN AL | .. |CA| .. [NY| .. WA .. WY
NY o .. o .| - o .. o
WA » 0 .. 0 .. o .M . o

CA o .. - o .. o .. o0

> Bag-of-words & N-gram: Texf Data
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» Custom Features: Domain Knowledge & EDA

amount
Stores|ZipCodellat, lon]]|

lOg (.CIZ) ¢(lat, lon, amount) =

» Generic Features: polynomials, orthogonal polynomials,
cubic splines, basis functions:

gbl(aj)v - 7§bk($)



Is this data Lineare

What does it mean to be linear?
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What does it mean 1o be a linear model?

f3(p(z)) = d(2)'8 = Z ()5,

In what sense is the above model linear? U\){ ll\.a\r{, O
_QJM,w\. Qom'o’mo\l-i&,

%C%'s
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Examples of Non-linear Feature Functions

» |In our toy dataset there appears to be cyclic patterns

» One reasonable collection of feature functions might be:

¢(x) = |x,sin(x), 1]

fa(p(x)) = 18y + ZB1 + sin(z)Bs



Examples Non-linear Feature Functions

» Linear models don't include model parameters in non-
linear fransformations! Problemgh

-

l A
fa(¢(x)) = Bo + zB1 + sin(Bzx + B4) B2

> This is not a linear model!
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Non-linear Feature Functions

> hyper-parameters that are externally optimized (e:g.,
using a grid search and not the normal equations...)
» Often by trying a range of values.
» Thisis alinear model: we minimize over the betas

falo(z)) = Bo + xB1 + sin(yx + o) B2

Bo + Bz + Box? + B3 sin(5x)



Model Selection




Kenya Variables

» Girth, Length, Height, BCS, Age, Sex

» Not including transformations, how many possible models
could we have examined? 6 = ¢4

> What if we used two-way interaction terms, e.g., Girth x
Agere

26+ (6 choose 2) =64+ 15=79

here we indudse
anly some of +hy. post bls modals —

For Qodn tus0-voatolols mudal ; ue
alto nclvds Yhe produst & the Z vomiadus
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How we chose the model

» We use a physical model as a starting point
» We considered model complexity
» We made residual plots

» We examined MSE (Mean Square Error, AKA Empirical
Risk)

> BUT, we didn't look at all 64 models

» What are other ways to choose a modele



Best Subset Regression

> Fit all 64 models:

6 one-variable models
15 two-variable models
20 three-variable models
15 four-variable models
6 five variable models

1 6-variable model

YV V VYV V

(Note that | am counting
each qualitative variable as
1, which isn’t quite right)

For each degree,
(one-variable, two-variable,

etc.),

find the model that minimizes
the empirical risk

We still have a problem: how
many variables do we sefttle
on for the modele



How to choose the best size model?¢

> |deally we want to do well in predicting a donkey in the
future

» We used the 500+ donkeys to fit the models

> We want the model to do well at predicting the weight
of a donkey that we have not seen/measured.



Along comes a new donkey...




How to choose the best size model?¢

The unseen donkey will be from the same distribution of
donkeys as the ones that we have seen already.

We want the expected loss for this new donkey to be small

E(Y, — Yp)? Lp. dotmin Hhe 2, voldues
(Yo = ¥o) For Phis domkay s omal .nshmd&.
Recall, that to estimate the prediction error, “set aside L,JQJ\E

20% of the data to assess our model after we chose it u5i+h

But we need help choosing the modell 7(_0. ’9‘
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The Train-Test Split

> Training Data: used to fit model

> Test Data: check generalization error Train - Test
Split .%
T\ 2
E¥o = %) ) |
1 m
t 2\2
m Z ;)
j=1 Trained on 0.8xn -
Tested on observations 0)
m = 0.2n —
observations

You can only use the test dataset once after deciding on the model.



Imitate the test-train split:

Cross-validation




Generalization: Validation Split

Train - Test Validation
Split Split

) ‘

Train

i > I
Generalization

Cross Validation

Data

_Troin V|

-I Train

\%

5-Fold

-
98]
0

—

Cross validation simulates multiple frain test-splits on the training dafta.



Generalization: Validation Split

- 17 = {i ¢ fold 1} Z@i B fﬁAzg (¢<$7’>>2

1 Fit model
Compute with data not
square error in first fold

Il — {Z “— f()ld 1} for datain

the first fold



Generalization: Validation Split

-
I
> g

How many
times does Y1
get used?
however

REPEAT

5

S: S:(yz — fgzg (¢($z))2

k=1 1

These 5 sums are not independent of one
another, but each summand has
independence between the data used
to fit the model and the data used to
assess prediction error



How to Implement with Best Subset
Regression

B W

. Find the best one-variable

model for data not in fold 1.
Obtain the loss for that one-
variable model using fold 1.
Repeat for folds 2, 3, 4, 5
Combine into one assessment
for the best one-variable
model

Repeat for each size model.

Select the model size according
to the minimum cross-validated
error.

Find the best model for that size
using all of the fraining data.



Training vs Test Error

t < Underfitting Overfitting -2

\
F S)
BestE Fit y

[raining Error

Error

>

Model “Ycomplexity”

(e.g., number of features)



Fitting Polynomials:

Cross-validation




ANC
ﬁin(5x)m —I—\ec

120

Bosin(bx) + Bix
Choose one of 32 models B, Sin(5x) + By + 52332

50 Sln(5£13‘) + 51:16 + 62$2 + -+ 532$32
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Set aside test set

120

100

80

60

40

20

-1.5

0.5

1.5

[ ]
x

Train Data
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- é\o sin(bx) + 61:13 best l""“",]"“- Pd‘j

50 Sln(5$) + 51$ + 52$
beot 2~
polﬂvm

50 Sln(5$) + 51513 + 525132 e
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5-fold Cross-Validation

from sklearn.model_selection import KFold

kfold splits = 5
kfold = KFold(kfold splits, shuffle=True, random state=42)

# One step in k-fold cross validation

def score model(train_index, test index):
model = linear model.LinearRegression()
model.fit(Phi[train index,], Y tr[train index])
return mean squared error(Y tr[test index],

model.predict (Phi[test index,]))

Create 5
random folds

For each fold,
use the fold’s
complement o
train and the fold

to test
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A fundamental challenge

IN modeling and learning




Fundamental Challenge

> Bias: the expected deviation between the
predicted value and the true value

» Variance: two sources

> Observation Variance: the variability of the random noise in the
process we are frying to model.

> Estimated Model Variance: the variability in the predicted value
across different training datasets.



Bias

The expected deviation between the
predicted function and the frue function

True signall Under-fitting -
9 tends to a large
bias

—1

SN N \ Expected

simple linear
model

TP mov covld gnredt ¥

n dbsorvahons owtn amd oW,
Eath K Yov £it G\‘J\m‘;u lingas
modsly Tha autsgt of, gt £45

15 I Expavitd Simgls Lingar Modi)
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Observation Variance

the variability of the random noise in the process we are
trying to model

> measurement variability . ° The data do
rug cur

> stochasticity / Yot foll on

» missing information .. 6){”\'\0’ curvL.
T y Ji= YA

Beyond our control A L . +rue

(usually) ! o 1 ; UrWl

= E-

W dowt ohaer €; org(x)
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Il At e dodon
OVaX Bnd VY, Cach 4t

Variance in the Estimated Model **"! givt adick

Py
variability in the predicted
function across different . ;
training datasets L o Twise

> Sensitivity to variation in the
training data

» Poor generalization

> Overfitting - tends to large
variance

et el A kA
of- variohilig ) ° | :

llcawst ey ot Phe dadu so P
c)\amb). @\\é Lvom, ong Yo 501 4 nay
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The Bias- Vdrionce Tradeoff

Es’rlmc’red Model Variance

SR

| -\/-0 I 1[4 A |




Analysis of the

Bias-Variance Trade-off




Analysis of Prediction Error

: Noise term:
» For the test point X the expected error:
» Random variables are red E [E] =0
True Function vV 5
Assume noisy observations L Z ar [E] — 0
> Yis a random variable = g(m) + €

(Y — f5(x))

Assume fraining data is random

- beta hatis a random
variable




Analysis of Squared Error

Goal: EX‘p-uM Lo&‘:

Risk = E(Y — f5(z))* =

Obs. Var. + (Bias)?+ Mod. Var.

Other terminology:

o~ + (Bias)?2+ Variance
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Obs. Variance
“*Noise"

(Bias)?

Model Variance



Bias Variance Plot

Optimal Value

Increasing Model Complexity =



How do we control model complexity?

> So far:

» Number of features
> Choices of features

> Next: Regularization

Increasing Model Complexity =



Bias Variance Derivation Quiz

» Match each of the following:

0
1 E(Y) Bias?
(2) E(Ez) Model Variance

Obs. Variance
a(x)
g(x) + €

mm o QO ® >



Bias Variance Derivation Quiz

» Match each of the following:

0
(1) E(Y)

Bicis?
(2) E(e*) Model Variance
Obs. Variance
g(x)

g(x) + e

mm o QO ® >



Regularization

Parametrically Controlling the s
Model Complexity . .

> Tradeoff:
> Increase bias
> Decrease variance




Basic I[dea of Regularization

Regularization is

AKA
Make them closer to 0 Shrinkage

Adjust all of the f3;

A

1 mn
— in — E LOSS(y;, ;
B = arg mﬁm P (y fg(x )

8 ;{5(5) < S e e

coefficients



Common Regularization Functions

SB) =) 5
j=1

» Distributes weight across related
features (robust)

> Analytic solution (easy to compute)

Does not encourage sparsity -
small but non-zero weights.

S(B) =Z|5j|

Encourages sparsity by setting
weights =0

> Used to select informative features

Does not have an analytic
solution = numerical methods



Standardization and the Intercept Term

» Regularization penalized dimensions equally

> Standardize features Standardization
» Ensure that each dimensions has the For each dimension k:
same scale T — Uk
» centered around zero Rk = oL

> Intercept Terms

» Don’'tregularize intercept term € Suggested
» Centery values (e.g., subtract mean)



Regularization and Norm Balls

\ 0%

Snaps to W& Snaps to

corners corners
> 9] < 9]
Weight Sparsity Compromise...
sharing inducing Two parameters ...
L2 Norm (Ridge) L1 Norm (LASSO) LT + L2 Norm

(Elastic Net)



Equivalent Representation

Fit the Data
mn

1
A = arg mﬁm - LOSS(vi, fa(xi)) + AS(B)
1
Parameter

Note W2 @in als0 WMinimize
Woor the )y - This 16

Aus‘r o usr..ul'mj o€ A

Penalize

Complex Models

=

» How do we deftermine 4
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The Regularization Function S(5)
Goal: Penalize model complexity
Recall earlier: ¢(z) = |z, 2%, 2°,...,2"]

> More features -
overfitting ...

» How can we control
overfitting through 5




Determining the Optimal A

A

5 = argmin 3 LOSS (s, f(a)) + AS(B)
1=1

> Value of A determines bias-variance tradeoff
> Larger values > more regularization - more bias - less variance



Determining
the Optimal A

Error

How do we
determine A¢

Increasing 1 =

> Value of A determines bias-variance tradeoff
> Larger values - more regularization - more bias - less variance

» Determined through cross validation



Regularization and High-Dimensional Data

Regularization is often used with high-dimensional data

e

Tall Skinny
Matrix

> nN>>p

> typically dense

» Regularization can
help with complex
feature transformations

e

| . "
N

"
|
|
[

f

> p>n

High-dimensional
sparse matrix

> requires regularization
» Goal: to determine informative dimensions
» Consider L1 Regularization. Why?¢

» Goal: is fo make robust predictions
» Consider L2 (+L1) Regularization



Why Stanford Researchers Tried
to Create a ‘Gaydar’ Machine

Modeling is hard,
especially when you
have tons of features

Facebook's ad delivery could be inherently
discriminatory, researchers say

By Adi Robertson | @thedextriarchy | Apr 4, 2019, 5:24pm EDT



