Data Science 100
Lecture 16:
Probabillity
Prediction

Dummy Variables




Probabllity Model &
Expected Loss



Simple Linear Probability Model

Tilde denotes the true
parameter values

AA Epsilon is

+ random noise

/Y:/60+/61$_|_€

Capital Y denotes a
random variable .
reat x as given

(conditional)



Simple Linear Probability Model

Epsilon is

VY — BO 4 6155 4 e/rondom noise

$(€) — () Errors have no trend
They do not depend on x or beta

\V ( ) 2 Thesize of the errors have no trend
ar\e) =0 They do not depend on x or beta



Simple Linear Probability Model

Constant Random Variable

——— ™
Yi=Po+brxi+e 19 . n

(Vi) = E(Bo+ Prai + ) soesiotons
= fo + frei + E(e;)

N 3 Property of expectation
_6O+ﬂlxi E(c+dZ)=c+dE(Z)




Simple Linear Probability Model

Constant Random Variable

——— ™
Y, =080+ b1x; +€ i=1,2....n

Expectation is

VCLT(E) — VCZT(BO + Blmi + Gi)Condi’rionoI on X

— VCLT(G@) Property of
9 variance

— 0 Var(c+dZ) =d*Var(Z)



L, Risk Minimization

If our goal is to predict Y, we can choose a prediction
based on minimization of risk (expected l0ss)

T - 9
Inin Y — (8o + B17)]

Minimize Expected Square Error

Conditional on x



|_2 RISk Conditional on x

S[Y ~ (6o + Bue)]? = Elfo + i + €~ (fo + b))

= E[e]* + [Bo — Bo + frx — Bix)?

since (Bo — fo + Pz — Pra)E(e) = 0

Minimized at 507 61 the true parameters



Empirical Risk Minimization

Po=Y — iz How well do the
n _ parameters
5 (xz — f)(Yz — Y) estimated from the
br = Z S (x; — 7)2 data estimate the
1=1 ! frue parameter

valuese



éo =+ Bl%‘
~ 1=1 ~
= Bo + b1T
— E(Y) — B(V)

First we derive
some useful
expectations






f the linear model
nolds, then the
eqast squares
regression |
parameters are
unbiased.




Essentially,
all models are wrong,
but some are useful.

George Box

What happens when they are
wrong¢ To Be Continued on

Thursday




Data Science Life Cycle

Design
g?)gf:i)gn :7 - Data Collection
—> - Data Cleanin
Refine Question to an . —— Ing
one answerable with .
data MOdelll.'\g .
Test-frain split

- Loss function choice
7\ Feature engineering
Transformations,
Dummy Variables
Model selection
Best subset regression
Cross-Validation

Model evaluation
Prediction error




i

How to weigh a donkey in the Kenyan countryside,
Significance, 2014, Milner and Rougier



Context

» Rural Kenya

» Donkeys very important for
transport - crops, water, people,
oloughing

» When donkeys fall sick, vefts
need to prescribe medicine

1.8 million donkeys in

» Dosage depends on weight, but Kenya
no scale in the countryside



Question

How can a vet prescribe
medication without knowing the
welght of the donkeye



Refined Question

Can we accurately estimate the
weight of a donkey from other more
easlly obtained measurementse



Sampling Frame #*.

Kate Milner received a grant
from The Donkey Sanctuary

to Design a Study to Answer
this question



Measuring

Sampling Frame ,
girth (cm)

Donkeys are routinely
brought to The Donkey
Sanctuary for de-worming

At the sanctuary, they can

be weighed and additional
measurements taken, such

as girth and height.

Measuring
height (cm)



Other Design Considerations

» Donkeys were randomly selected at the de-worming site

Why random selectione

» Donkeys were marked after being measured
Why marked?

» Thirty donkeys were weighed twice, with other donkeys
weighed between the 2 measurements

Why weigh other
donkeys in betweene



Data Collection

BCS Age Sex Length Girth Height Weight WeightAlt
0 30 <2 stallion 78 80 80 77 NaN
1 25 <2 stallion 91 97 94 100 NaN
2 15 <2 stallion 74 83 95 74 NaN
3 30 <2 female g7 109 96 116 NaN
4 25 <2 female 79 98 91 91 NaN
5 15 <2 female 86 102 98 105 NaN
6 25 <2 stallion 83 106 96 108 NaN
7 20 <2 stallion 77 95 89 86 NaN
8 3.0 <2 stallion 46 66 71 27 NaN
9 3.0 <2 stallion 82 110 99 141 NaN

BCS — Body Condition Score
l=emaciated, 3=healthy,
5=obese, with 'z scales

Age - <2, 2-5, 5-10, 10-15, 15-
20, >20 years

Sex —stallion, gelding, female
Length (cm)
Girth (cm)
Height (cm)
(kg) - RESPONSE



Data Cleaning



Data Cleaning

Compare the second
weighing to the first
weighing for the 30 donkeys 2 “

20

15

Conclusion:

10

5

e . A

-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00
WeightAlt




Data Cleaning

Furt

ner investigation reveals

« ] donkey has a BCS 1

and is determined to be @

G

G

onkey has a BCS 4.5
onkey weighs 27 kg

baby

donkeys.describe( )

BCS Length Girth Height Weight  WeightAlt

count 544.000000 544.000000 544.000000 544.000000 544.000000 31.000000
mean 2.889706 95.674632 115.946691 101.349265 152.104779 150.258065
std 0.425656 7.348897 7.438570 4256430 26.506715 22.711183
min 1.000000 46.000000 66.000000 71.000000 27.000000 98.000000
25% 2.500000 92.000000 112.750000 99.000000 139.000000 141.500000
50% 3.000000 97.000000 117.000000 102.000000 155.000000 151.000000
75% 3.000000 101.000000 121.000000 104.000000 170.000000 165.500000
max 4.500000 112.000000 134.000000 116.000000 230.000000 194.000000

What to do with these 3 donkeyse






Modeling

» We want to build a model for predicting weight of @
donkey when we don't have the donkey’s weight

» The model needs to perform well enough 1o be used in
the field

» The model needs to be simple enough for
Implementation in the field



The Variables in Our Model:
min||7 — X3

Column/feature space /6
n rr -1 N B m
Y1
7 — — — . yQ n
A= |1 Iy Ty =+ Tpl y=1|.|€eR
AT AT N I
P+1 ]

n records in p+1 dimensions (columns or features)



Y minimizes the L, min||7 — XEHZ

empirical risk G
V. Y is the
2 PROJECTION of Y
o — X
*-1;0 (Y B) intfo the subspace
(@c@ spanned by the
C)QOQ Normal to subspace columns of X
OC’@ XBSponned by X
Q
> : Definition of orthogonal

—
e

X2 0 =X"(y — Xp)




Solve for 5

0= X" (7 — XﬁA) Definition of orthogonal
0 = X'y — XX

XtXB Xty Normal Equations

f=(X'X)"'X'y g = X0 =X(X'X)"'X"g



How can we assess our modele

» How well does our model predict the weight of a new
donkey?¢

» The risk: For a new donkey with p features: X

(o+1) x 1
(Yo — Yo)? = (Yo — 253)?

e

Only problem is that 1 X (p+1)
we can't take this

expectation E.g., arow in the design X




Train — Test Paradigm

Set aside some data before we begin our EDA and model fitting



How can we assess our modele

> |If we use the same data to fit and assess the model, then
we overestimate how well our model does at prediction.

> Instead, use a test

“:(YO — }}0)2

Assessed (AKA

set: (x4,Y;) forj=1,...,m
= E(Yy — 250)°
1 m

~ = > (Y - $§5<
j=1

Fitted (AKA
trained) on n

tested) on m observations
independent
observations



Training vs Test Error

4 & Underfitting | Overfitting
Error from
: new m
BeST FIT observations

Error (Loss)

TrOIﬂlng E’TOF Error from

original n
»  Observations

Model “complexity”

(e.g., number of features)



Train-Test Split — With one set of data

» Training Data: used to fit model

Train - Test
Split

—

> Test Data: check generalization error

» How tfo splite
» Randomly, Temporally, Geo...
» Depends on application (usually randomly)

» What size?¢ (90%-10%)

» Larger fraining set > more complex models

» Larger test set 2 better estimate of
generalization error

> Typically between 75%-25% and 90%-10%

Train

Test

You only use the test dataset once after deciding on the model.



Split our data before we begin EDA

Set aside 20%
of the records

We will use
these 1o assess
the accuracy
of our model

train =

indices = np.arange(len(donkeys2))

np.random.shuffle(indices)

n train = int(np.round((len(donkeys2)*0.8)))

n test = len(donkeys2) - n_train

indices[:n train]

array([454, 108,
342, 287,

386, 463,

21, 344,

91, 407,

453,
514,
164,
155,
181,

339,
314,
458,
492,
120,

142,
220,
270,
318,
276,

518,
100,
102,
133,

12,

513,
185,
92,
69,
104,

donkeys2.iloc[indices|

151, 443, 194,
5, 512, 331,
3, 393, 278,

343, 242, 61,

160, 255, 418,

:n_train],

523,
204,
189,
363,
234,

]

470,
153,

31,
262,
149,



Train Model then Test Model

» Optimize on Train sef mﬁi'ﬂ”gtrain — th,«aq;ngHQ

—

> Minimizer: Birain

> Evaluation onm

‘|gtest — XtestBtrain H2



ED
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Weight

225
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¢

stallion female gelding
Sex

Not a big difference between
stallions and females

Length

110

100

90

80

70

90 100 110 120 130
Girth

Girth and length are correlated
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Physical Model

The donkey as a cylinder with
appendages

Suggests Model:
h(weight) = a + Blog(girth) + ylog(length)

Statistically, consider other
variables and various
transtormations of weight




Loss Function



Two Scenarios

» Loss function should reflect the cost to the donkey’s
health of prescribing the wrong dose

> Anfibiofics:
> Effect is less sensitive to the weight of the donkey
» Better to overdose: otherwise infection might not be treated
» An under-dose could lead to drug resistance

» Anesthefics:
» Effect is more sensitive to the weight of the donkey

» Better to under-dose: the effect can be observed and adjusted



Anesthetics Scenario

5000

QUESTION: Does
a negative value

4000

00 correspond to

< 000 an overdose or
The x-axis is relative
error as d percen’roge 1000 O n U nder_dosee
A value of -10% 0 enﬁre
Corresponds -|-O The -40 -30 -20 -10 0 10 20 30 40

relative error

situation where the
actual weight is 10%
smaller than the
predicted weight

actual — predicted

100
predicted " %



Minimization
» Geometric perspective useful for L, loss, but not here

» We can use calculus to derive the normal equations for
this loss and easily solve for the optimizing parameters

> Inlab, we saw techniques for minimizing general loss
functions, we will cover this in more detail next week

In [143]): from scipy.optimize import minimize

res = minimize(lambda theta: new loss(theta, X, y), np.ones(3))
# estimates for theta
theta hat = res[ 'x']



Feature Engineering

Keeping it Real



Feature Engineering

» The process of transforming the inputs to a model to
Improve prediction accuracy.

» A key focus in many applications of data science
> Anart ...

» Feature Engineering enables you to:
» encode non-numeric features to be used as inputs to models

» capture domain knowledge (e.g., periodicity or relationships
between features)

» transform complex relationships into simple linear relationships



Basic Transformations

» Uninformative features: (e.g., UID)
> |s this informaftive (probably not?)
» Transformation: remove uninformative features (why<)

» Quantitative Features (e.g., Length)
» Transformation: May apply non-linear transformations (e.g., loQ)

» Transformation: Normalize/standardize (more on this later ...)
» Example: (x — mean)/stdev

» Categorical Features (e.g., sex)
» How do we convert sex info meaningful numbers?
» female =1, gelding = 2, stallion = 3¢
» Implies order/magnitude means something ... we don’'t want that ...
» Transformation: One-hot-Encode



We have 3 numeric variables

Use 1, 2, or 3 variables in the model?

14

There are only 7
combinations of
variables, so we try
all of them.

12 A

10 A

Average Loss

What would you do?¢
deadl

o N BN (o)) (o]
1 1 1 1 1

Girth  Length Height G+L G+ H L+H G+L+H
Model



Take Stock

 Dropped 3 records
« Divided the data into 20%-80% split and set 20% aside

« Selected a loss function that erred on the side of under-
dosing

« Examined models for weight based on the numeric
variables and selected girth and length to model weight

« EDA showed that the qualitative variables may be usefu



Qualitative Variables



Recall

Recall our original optimization problem when we had no
additional information and wanted 1o find the closest

constant foy .
1
— l 79
2 2 loss(uis )

We saw that for L, loss the minimizer was the mean:

A

b=y



We have information about which
group each observation belongs to

We are interested Z loss(yi, By)

INn finding the i€gelding

closest constant

to each group. Z loss(1;, Bs)
1€stallion

Call them

Bg> Bs: By > loss(yi, Bs)

1€ female



Use the Information about which group
each observation belongs to

Minimize with Z loss(yi, By)

respect to 3, regelding

The minimum is the
average for the

agroup, A

592%




Infroduce 0-1 Variables

fg Vector (n by 1) of Os and 1s:
1 for the observations that correspond to geldings

Tr,; =1 1f the it" observation is a gelding

Y

—= 0 if the i'" observation is not a gelding

fs, ff Vector of Os and 1s to indicate stallion (or female)

y  Weight measurements



Transtorming a Qualitative Variable

» Transform categorical feature into binary features:

sex [N celcing | stalion _

gelding 0 0

stallion
female »

female

stallion



AKA One-hot encoding

“gelding | staon | female
1 0 0
o
0 0 1 Female —~
L g
0 ] 0
Gelding —~&"
:)/C —@—
smmon@”'

?




Re-express Loss with O-1 Variables

n

Z[yz — (ng,iﬁg +- 'Ts,iﬁs -+ .CIZ‘f’Z'ﬁf)]Q

1=1

= |4 = (Fg8y + TsBs + T4 B¢) I

= |7 — XB|?



Model with girth and sex dummies

—_

Tg Ts, ff Vectors (n by 1).of Os and 1s for geldings, stallions, and
females respectively

—

Xy  Girth measurements

y  Weight measurements

|G — (ZBr + T8y + TsBs + Taby)||”



Model with girth and sex dummies

Ty By fgﬁg Tss ffﬁf

\ Y J
For a gelding, what does this

linear model reduce to¢

The stallion

and female The stallion modelis Tr.iBr + Bs
dummies are

bothO - ;fr + by The female model is Tri 3r + B



Adding Dummy
variables to a
model yields

parallel fitted lines | €~
7’ ® ,
/3 ’,/ ’
7’ /7 ‘ 7’
Q‘/ /’
/s ,’®
/// ® // ///




Sex and Girth

When our model has dummies and quantitative variables,
we offen include an intercept term.

Our design has collinearity problems

1| gith [ gelding | stallion | female _
100 ]

1

1 110
1 121

1 92

1

0 0
] 0
0 ]
0 ]
100 ] 0

o O O O



Sex Ond Gerh DeSIQH How can we express in

We often remove one of terms of the remaining
the dummy variables. variables?

gelding | stalion | femaie | 1| Gitn [N oelding| stallion | 1| Girth_
0 0 . 1 o0 ] .
o y S
o [ o
o [ :
S oo o
In this case, the female donkey average is the intercept, and

the gelding and stallion coefficients represent the amount to be
added orremoved from the female average

OOOOI

— —— — — —)

0 1
0 ]
0 ]
0 ]



Sex and BCS

If we include both Sex and BCS we run info the same
problem, i.e., the sum of the sex dummies = sum of the BCS
dummies so we have collinearity again

oeing Ldalon__iemale_ucs 15 z00csz5 Lo 40

0
0
]
]
0

0 0
1 0
0 ]
0 1
] 0

o O O O
o O O O
— O O — O
oo O O O O



Sex and BCS

What is the rank of How do you suggest
this design matrixe fixing ite

oeing Ldalon__iemale_ucs 15 z00csz5 Lo 40

0
0
]
]
0

0 0
1 0
0 ]
0 1
] 0

o O O O
o O O O
— O O — O
o O O O O



Choice of dummy encodings

Inference Prediction

« We are interested in the e |t doesn’'t matter that the
form of the model and model is over
the fitted values of the parameterized
parameters

« We are not inferested in
 These are not unigquely the fitted coefficients
defined if the model is
over parameterized



Choice of dummy encodings

> Typically we include the 1 vector

> Select one of the categories for the qualitative variable 1o be
the base/comparison group

» Drop the dummy variable corresponding to that category

> Interpret the other coefficients as the change from the base
» BCS - drop 3, the healthy category

> Sex —drop female because we are interested in collapsing
the other two categories or possibly dropping all fogether



Why not tfreat BCS as numerice

BCS

15

2.5 0 0

2.5 0 ] 0

2.0 0 0 1 ‘ .
0 0 1 |
0 ] 0

= 125
The relationship need not be 100
linear in the numeric values. 75

1.5 2.0 2.5 3.0 3.5 4.0
BCS

This coding is more flexible



We collapse categoriese

15-20

>20

It appears that for donkeys
over 5, the groups have
similar averages.



Model Selection



Count the variables

» 3 numeric + 2 Sex dummies + 5 BCS dummies + 6 Age
dummies = 16 variables

» With dummy variables we are careful when we add and

drop variables as that implicitly collapses categories info
the base category



Final Model

Keep all levels of BCS
Plus Girth and Length

Collapse Age levels
Drop Sex all together

over 5 info one

. 9ewas) (X8
. Buipjab :xeg
' uolB)S :Xes
. 02-G| @by
. GL-0} @by
. 01-G :eby
. G-z aby

By quawisnipe aAlIppY



Model Assessment



Test Data Returns!

Nearly all (95%) of
the actual weights
are within 10% of
the predicted
weights

80 100 120 140 160 180 200 220
Predicted Weight (kg)



Data Science Life Cycle

Contexi

Question

Refine Question to an
one answerable with
data

Model evaluation
Prediction error

Design
‘7 —p . Data Collection
. ~—  Data Cleaning

l Modeling
Test-train split
— Loss function choice
/| Feature engineering
Transformations,
Model selection Dummy Variables

Best subset regression
Cross-Validation
Regularization




