Multiple Linear Regression – A Geometric View

Topics

- Switch from an observation perspective to a variable perspective
- Review Linear Algebra
- > Build intuition with a toy example
- > Guest Lecture from the DS Education Program

Observation Perspective

Scatter plot examines (x_i, y_i)

Extend Empirical Risk

Minimize empirical risk to estimate y by a linear function of x

$$\min_{a,b} \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

Sum over the observations (x_i, y_i)

$$\hat{a} = \bar{y} - \hat{b}\bar{x}$$

Minimizing
$$\hat{a}=\bar{y}-\hat{b}\bar{x}$$
 $\hat{b}=r\frac{SD_y}{SD_x}$ values

Predictor
$$\hat{y} = \hat{a} + \hat{b}x$$

Observation perspective (x_i, y_i)

Observe
$$(x_i, y_i), i = 1, \ldots, n$$

Predict
$$(x_i, \hat{y}_i), i = 1, \ldots, n$$

Error in prediction
$$e_i = y_i - \hat{y}_i, i = 1, \dots, n$$

Switch to Variable Perspective

Variable perspective

$$ec{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} \quad ec{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} \qquad ec{\hat{y}} = \hat{a} \vec{1} - \hat{b} \vec{x}$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \hat{a} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + \hat{b} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Variable perspective $\vec{y}, \vec{x}, \vec{\hat{y}}, \vec{e} \in \mathbb{R}^n$

$$\vec{y}, \ \vec{x}, \ \hat{\hat{y}}, \ \vec{e} \in \mathbb{R}^n$$

$$\vec{\hat{y}} = \hat{a}\vec{1} + \hat{b}\vec{x}$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \hat{a} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + \hat{b} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \begin{bmatrix} \vec{e} = \vec{y} - \vec{\hat{y}} \\ e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}$$

$$egin{array}{c} ec{e} = ec{y} - \hat{y} \ ec{e}_1 \ ec{e}_2 \ dots \ ec{e}_n \end{array} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{array} - egin{bmatrix} \hat{y}_1 \ \hat{y}_2 \ dots \ \hat{y}_n \end{array}$$

Review Vectors

Vector

Vector – consists of a length and direction \vec{v}

Length of a Vector

Pythagorean's theorem

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2}$$

Length of a Vector

Pythagorean's theorem carries over to vectors in n-dimensions, i.e., $\vec{v} \in \mathbb{R}^n$

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Scale a Vector

Change the length of the vector, for some scalar $oldsymbol{\mathcal{C}}$

Add Two Vectors

Take a step according to the length and direction of u and from that point take a step in the direction of v for the length of v

$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

Subtract Two Vectors

Take a step according to the length and direction of v and from that point take a step in the direction of -u for the length of u

$$\vec{v} - \vec{u} = \begin{bmatrix} v_1 - u_1 \\ v_2 - u_2 \\ \vdots \\ v_n - u_n \end{bmatrix} \qquad \vec{v} - \vec{u}$$

Distance Between Two Vectors

The distance between u and v is the length of v - u.

$$\vec{v} - \vec{u} = \begin{bmatrix} v_1 - u_1 \\ v_2 - u_2 \\ \vdots \\ v_n - u_n \end{bmatrix} \qquad \vec{v} - \vec{u} \qquad \vec{v}$$

Vector space – span $\{\vec{v}\}$

All vectors in the vector space can be expressed as a scalar multiple of the spanning vector \vec{v}

Vector space – span $\{\vec{v}_1, \vec{v}_2\}$

All vectors in the vector space can be expressed as a linear combination of the spanning vectors

Vector space – span $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$

All vectors in the vector space can be expressed as a linear combination of the spanning vectors

$$\vec{w} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_p \vec{v}_p$$

Vector space – span $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$

All vectors in the vector space can be expressed as a linear combination of the spanning vectors

Projection

Projecting v onto u means we find the point in the subspace span{u} that is as close to v as possible

Inner product $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$

> Length
$$|\vec{v}|| = \sqrt{\vec{v}\cdot\vec{v}} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$$

- > Pythagorean's theorem in n-dimensions
- \succ Distance between two vectors $\| ec{u} ec{v} \|$
- Inner product for orthogonal vectors is 0

AKA Dot Product

Projection: $c^*\vec{u}$

$$\vec{v} - c^* \vec{u}$$
 Orthogonal to $\operatorname{span}\{\vec{u}\}$

Find the vector in the span{u} that is closest to v

$$\begin{split} \|\vec{v} - c\vec{u}\|^2 &= \|\vec{v} - c^*\vec{u} + c^*\vec{u} - c\vec{u}\|^2 \\ &= \|\vec{v} - c^*\vec{u}\|^2 + \|c^*\vec{u} - c\vec{u}\|^2 \quad \text{Inner} \\ &+ 2(\vec{v} - c^*\vec{u}) \cdot (c^*\vec{u} - c\vec{u}) \quad \text{Product is 0} \\ &= \|\vec{v} - c^*\vec{u}\|^2 + \|c^*\vec{u} - c\vec{u}\|^2 \quad \text{Minimized} \\ &\text{for c = c*} \end{split}$$

General:

Consider the span: $\operatorname{span}\{\vec{u}_1,\ldots,\vec{u}_p\}$

Find the closest vector in this span to $\,ec{v}\,$

$$\min_{\vec{w} \in \operatorname{span}\{\vec{u}_1, \dots, \vec{u}_p\}} \|\vec{v} - \vec{w}\|^2$$

The minimizing vector will be the projection onto the span

$$(\vec{v} - \vec{w}^*) \cdot \vec{w}^* = 0$$

Bring in the Data

Variable perspective
$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
 $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

$$\vec{\hat{y}} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \quad \text{The fitted} \quad \text{values are in} \quad \text{the span} \quad \vec{\hat{y}} \in \operatorname{span}\{\vec{1}, \vec{x}\}$$

Recall

Data
$$(y_1,y_2,\ldots y_n)$$

Find the summary statistic that minimizes the L₂ error

$$\min_{c} \sum_{i=1}^{n} (y_i - c)^2 \qquad \blacksquare$$

Equivalent to finding the closest vector in the span of 1 to y $\min_{c} \|\vec{y} - c\vec{1}\|^2$

Summarizing y by a constant

Least Squares

$$\min_{a,b} \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

$$= \min_{a,b} ||\vec{y} - (a\vec{1} + b\vec{x})||^2$$

Minimize the squared distance between y and a vector in the span of 1 and x

$$\vec{\hat{y}} \in \operatorname{span}\{\vec{1}, \vec{x}\}$$
 tells us that the

Pythagorean's theorem tells us that the projection will have the smallest distance

Least Squares

Data
$$(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$$

Find the coefficients to the line that minimizes the L₂ error

$$\min_{a,b} \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

Equivalent to finding the closest vector in the span of 1 and x to y

$$\min_{a,b} \|\vec{y} - (a\vec{1} + b\vec{x})\|^2$$

Regression from the Variable Perspective

Useful Properties

Average of the residuals is 0

$$\vec{e} \cdot \vec{1} = 0$$

> The inner product of the fitted values and residuals is 0

$$\vec{e} \cdot \vec{\hat{y}} = 0$$

> The inner product of the residuals and x is 0

$$\vec{e} \cdot \vec{x} = 0$$

Toy Example

Toy Example

Correlation(w,y) = 0.77

Correlation(x,y) = 0.17

Best simple linear regression – fit y to w

$$\hat{y} = \hat{\beta}_0 \vec{1} + \hat{\beta}_1 \vec{w}$$

$$= 13\vec{1} + 1.4\vec{w}$$
Explained SS
$$\frac{\text{Explained SS}}{\text{Total SS}} = 0.60 \quad (=r^2)$$

But, what about a 2-variable model to predict y?

The correlation between x and y is weak so it seems like we will gain little if we add x to the equation.

Two variable regression: fit y to w and x

Consider the model we are fitting

$$\vec{y} \approx \beta_0 \vec{1} + \beta_1 \vec{w} + \beta_2 \vec{x}$$

For a fixed w = 7, this model is: $\vec{y} \approx (\beta_0 + 7\beta_1)\vec{1} + \beta_2 \vec{x}$

For a fixed w = -7, this model is: $\vec{y} \approx (\beta_0 - 7\beta_1)\vec{1} + \beta_2 \vec{x}$

Notice that for a fixed value of w, we see that the relationship between x and y is linear with the same slope.

There aren't many points in these plots, but they show a linear relationship of slope about 2.

Slopes for these subsets are both about 2

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 w + \hat{\beta}_2 x$$

$$\hat{y} = 7 \times 10^{-15} + 2w + 3x$$

$$\frac{\text{Explained SS}}{\text{Total SS}} = 1.0$$

$$\text{Multiple R}^2$$

$$\vec{y} = \vec{x} \quad \vec{w}$$

$$\begin{bmatrix} 20 \\ 19 \\ 35 \\ \vdots \\ 15 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 7 \\ 1 & 8 \\ 9 & 4 \\ \vdots & \vdots \\ 5 & 0 \\ 3 & -4 \end{bmatrix}$$

Here, y is perfectly described by a linear function of x and w, even though the pairwise plots didn't reveal this relationship

Interpretation of the fitted coefficients

$$\hat{y} = \hat{\beta}_0 \vec{1} + \hat{\beta}_1 \vec{w}$$
 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 w + \hat{\beta}_2 x$
= $13\vec{1} + 1.4\vec{w}$ $\hat{y} = 2w + 3x$

Notice that w has a coefficient of 1.4 in the simple linear model, and a coefficient of 2 in the two-variable model.

These two coefficients are not the same because the models are different. The 1.4w yields the best fit when w is alone in the model

The 2w yields the best fit when w is in a model with x. That is, the coefficient is dependent on the other variables in the model.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 w + \hat{\beta}_2 x$$

$$\hat{y} = 7 \times 10^{-15} + 2w + 3x$$

$$\frac{\text{Explained SS}}{\text{Total SS}} = 1.0$$

$$\frac{\vec{y} \qquad \vec{x} \qquad \vec{w} \qquad \vec{y} \qquad \vec{x} \qquad \vec{w} \qquad \vec{x} \qquad$$

Here, y is perfectly described by a linear function of x and w, even though the pairwise plots didn't reveal this relationship

How well is y described by w and v?

$$\frac{\text{Explained SS}}{\text{Total SS}} = \begin{array}{c} 0.6 \\ 0.7 \\ 1.0 \end{array}$$

$ec{y}$	$ec{w}$	$ec{v}$
$\lceil 20 \rceil$	7	$14 \rceil$
19	8	16
35	4	8
•		•
15	0	0
	$\lfloor -4$	-8

How well is y described by w and v?

$$\frac{\text{Explained SS}}{\text{Total SS}} = 0.6$$

The fit is the same as for the simple linear regression with w because v is in the span of w.

We can still find y-hat, but we do not have a unique solution for the coefficients of v and w.

$ec{y}$	$ec{w}$	\vec{v}
$\lceil 20 \rceil$	7	14
19	8	16
35	4	8
	•	•
15	0	0
	$\lfloor -4$	−8 _

$$egin{array}{c} ec{y} \ 18.3 \ 34.8 \ dots \ 1.8 \ \end{bmatrix}$$

$$\vec{x}$$
 \vec{w}

$$\begin{bmatrix} 2 & 7 \\ 1 & 8 \\ 9 & 4 \\ \vdots & \vdots \\ 5 & 0 \\ 3 & -4 \end{bmatrix}$$
Add error to y
$$\hat{\beta}_{x}$$

$$\beta_{w}$$

$$\hat{\beta}_{w}$$

$$\hat{y} = -19.8 + 3.01x + 1.98w$$

$$R^{2} = 0.98$$

$ec{y}$	
$\lceil 19.4 \rceil$	
18.3	
34.8	
•	
15.6	
[1.8]	

What is the fit?

Y-hat is the same as the fit to x and w

But the coefficients are not uniquely determined Suppose we have only 5 observations

$$5 = n = 1 + p$$

$$\hat{y} = -19 + 3x + 2.3w - 1.2x^2 - 0.02w^2 \qquad R^2 = 1$$

Summary Properties of Multiple Linear Regression

- Multiple Linear Least Squares regression is equivalent to projecting y onto the span of the features.
- \blacktriangleright When p=n the errors are 0 and the fit is perfect.
- ightharpoonup When $\operatorname{rank} \mathbb{X} < p$ there is not a unique solution for the coefficients
- ightharpoonup When $\vec{y} \in \operatorname{span}\{\mathbb{X}\}$ the features perfectly predict y.