Simple Linear
Regression



Today's Topics

» Review simple linear regression, including
Least squares

Correlation

Prediction

Inference

Hypothesis testing

VYV YV VYV

» Connect regression to L, loss minimization

> Case Studies
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Cancer Magister ako
Dungeness Crab

All crab photos
courtesy of Oregon Fish
and Wildlife




Fishing Regulations

Male crabs only

No fishing in mating season

Limits on the numbers
caught

Lift Restrictions ©
Female Crabse

Millions of pounds
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Dungeness crab landings 1947-2006
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General Problem

» Want to be sure that females
have an opportunity to
produce offspring for a few
years before fished

> Can we use size 1o tell how
old the crab is¢

» Crabs has exoskeletons,
which they shed every year -
This makes it hard to
estimate the age of a crab

PhotosyScott Groth s



Answerable Question:
Given a crab’s postmolt size,
Estimate how much it grewe

With this tool,
researchers can
estimate the age
of a crab.



Data Collection Methods

Crabs were caught in mating embrace,
Females measured before and after molting
452 crabs :

V. V. V V

Variables

» Premolt size (mm)
» Postmolt size (mm)
> Increment (mm)




But what is

Univariate Distributions their ioinf

relationship?
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We see that postmolt size and increment are both unimodal
and somewhat skewed. Growth increment is right skewed
and postmolt size is left skewed.



Guess what the correlation is like
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Relationship: postmolt & increment

N e - Correlation =-0.77
’ 0
W en) s : T, avggativg
5 0.0.‘0.;.;.‘ dy0,, | QON‘J?JGLHME
< o 00
' o o Rough linear
0 o %
12- ‘ .‘t ' . association
LG\Y‘%QF erob s
- l I I | : “—U\AC,Q '@MKP‘Q
120 130 140 150 160 ermallar 1WoRL WS


Deborah

Deborah

Deborah


How can we use postmolt
carapace size to predict the
growth incremente

e.g., what do we predict for
growth increment of a crab with
135 mm postmolt carapacee
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Crabs with postmolt size 135

(to the nearest 2.5 mm)

25- —_
I |
I 0 | 02-
20 - o . . " .. . ) ,
= o' ’?. "“. ‘"' ]
15 ; ‘e o" .% I‘ " e“@ ‘o‘ 3y,
= I o‘| s.otg
- " |° ‘ .8"" M‘
10 | .‘.

00-

| | 100 125 150 115 200
Increment for crabs with postmolt [132.5, 137.9]

: 1
120 W |3y 1 t 150 @U %/G;ﬂ/@ [N\;Vv;jdocl\s »
nostsz not wo NS
%q ) TAGS O b e (Y


Deborah

Deborah

Deborah


Crabs with postmolt size 135

(to tThe nearest 2.5 mm)

How would we
summarize the growth
iIncrement for this
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Increment Distribution for fixed Post size
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For each bin of crabs

h

Let (x;,v;) represent the i*" crab’s

(postmolt size, growth increment)
For a bin of crabs with same postmolt size, predict
Increment
- 2
min , — C
in Y i

1:x;Ebin

We find the constant that minimizes L, empirical risk
for the growth increment of crabs in a bin



Avg Increment for each postmolt bin
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I ]
I I I | ° i And, using all of
;. | | I | | | the data gives
120 130 40 5 s usaa better fit
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. . Qor dnlu
Average Empirical Risk ¢4, ) pair

For all of the data together: oot Wg* N i\l\U\W\JA‘X

Minimize empirical risk for estimating crab increment by @
inear function of postmolt size

min Z[yz — (a + bx;)]?
| point on une
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F\fb

MiNg. b Z + bx;)) \b,% \(, \l/
T - W - x
» Derivative with respect to a 3\ -:68‘ -ﬁ X i

—2 Z(yi —a — bx;)

1

» Derivative with respect to b

—2> (yi —a— bx;)z,

(/
> Setto 0 and solve fora and b
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Minimization: a = 30

Nice interpretation:
Predict growth increment to be
30 mm less 10% of the postmolt size

Qur binned mean was

Fora 135 mm
15.6 mm

postmolt crab, we
Eavrgsdm’r ITs Increment Which is better

30-0.1x135=16.0 mm )F If the relationship is roughly linear,

then using all of the data to fit
the line gives a better prediction
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Fittfed parameters: .
a=1y—bx
Regression line: Y = a + b ) — ,,,SDy
SD.,
Rearrange terms: ( _)
R _ L — L) v S2nin
y=y+rSDy—o Sl wwts
L (SUIO{'VQ\(j'

For an x that is, say 2 standard units above/below

average, the regression line estimates y to be 2r e b
standard units above/below average. D) Y
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Least Squares
Regression

Some Important Concepts



Correlation



Correlation measures the strength of
inear association between x and y

» Correlation is a measure for two quantitative variables

» Need to plot the data to check if the relationship is linear

wwm

1 Lj — x) (yz y)
r(x’y):EZ(SD * 75D
i=1 z Umm
T s v un Correlationis  unitless

L,-% «mn oL SD(z)? = Var(x)
%D’)C EW\W\ 6OQNUJY)
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Example Correlations for data with
positive linear association (SDs = 1)
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SAME regression line and correlation
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Correlation does not imply Causation

» Since this is not an experiment where we controlled the
size of the postmolt size of the crab and observed its
growth, we can not make any causal conclusions

> With observational studies we can observe and describe
relationships.

» We can make predictions, but we need to be careful
about the interpretation of the models that we build.



Correlation does not imply Causation

» Consider other variable(s) that is highly correlated with x.

» Correlation is still informative, even if we can’t assign
causality.

> .



An example of perfect correlation

» score on quiz (out of 25 points)

> points_lost on quiz 25 0

> The scatter plot of (score, points_losf) 20 |8

shows all the points fall on a line 22 3
15 10

> What's the correlation between the

. 25 0
score and points_loste
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Yi = 20 — x4 Find the
1 correlation
1 25 — 1) = 25 7
= EZ (26 —x;) =25 —=Z
1
Var(y) = — E 25 —x; — (25 — 2)]° = Var(z)
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INn general, with a perfect linear association
Y, =a+bx; fore=1,....,n

y=a-+bx

Var(y) = b*Var(z)

r=1ib6>0 r=—11i1tb<0



Fitted Values and
\E Residuals

=g oo

Y 9°
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(X1! y1) ‘

(X27 y2) '

(X37 y3) ‘

Data:

(51?7;, yz)



Regression Line
minimizes the L, loss
between y, and a+bx;
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Fitted Values

Predictions are
points on the line

@: a4 bx

Given an x
value, whatis
the prediction
forye



Deborah

Deborah

Deborah


Gt ) )S
Frrors AKA Residuals Zé/ﬂ" M foﬂ

The errors (AKA
residuals) in our

prediction
| € = Yi — Yi
- = =

Pa—
—_—

Note that these
errors are vertical
distances
between the line
and the points
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Residual plofs

> Plot the pairs (x;, €;)

» Plot the pairs (%, €;)
e

» Look for patterns in the residual plofts
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» See no pattern — the relationship is well represented by a line ql_
» Curve — transformation or additional variable may be needed ’s
» Funneling — the accuracy of the regression line varies with the

size of x.
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Residuals

Plot the pairs
(postmolt size, residual)

Residuals from Premolt ~ Postmolt

Residuals
0

| | 1 |
130 140 150 160

Postmolt (mm)
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Variation — Explained
and Unexplained



Total Variation. AKA Sum of Squares

> (0~ i(& L\

Tz5+ 66 ~
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Variation — Explained & Unexplained

n n

Z(yz —9)? = Z(yz —Gi + 0 — 7)°
i=1 i=1
Total
Variation _ 4 Z(QZ . ?j)Q
i on i =
Ve Vamen Ve hy
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Regression from the Scatter Plot Perspective

Regression
line




Regression from the Scatter Plot Perspective

. Umpnzpla
s Yi e Cnl) o (2:300)

Regression
line
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Regression from the Scatter Plot Perspective

Residual —
Unexplained variation

€ =Yi — Yi (zi,y;)

yi Regression
line

(Z,9) (5 1)

Point of

Y . variarion
U (5, Y




Regression & Inference



Question: Do 720
5-kg cafts produce
more heat than 1
3600 kg elephante

Q;\;&iziz
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Or, the story of the spherical cat



Kleiber's Equation

» Does a horse produce more heat per day per kilogram
of body mass than a rate

» This is a question studied by Kleiber (1947), Clarke (2010)
» Metabolic Rate: kilocalories per day
» Mass in kg

» He measured 19 animals (mouse, dog, cat, goat, man,
cow, elephant...)



Kleiber's Data

» Population — a typical "mammal”
» Sampling Frame - - an experiment is not possible here

» How were the subjects obtainede From a population, a
random sample, or a sample of convenience®?

Sample of convenience



Metabolic Rate is highly skewed

Log Metabolic Rate is less skewed.
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Masss is also highly skewed

Log Mass is less skewed.
The skew is in the ofther direction

0.006 35
0.005 30

25
0.004

20
0.003

15
0.002

10
0.001 } 05
0.000 AN\ .00

0 500 1000 1500 2000 2500 3000 3500 4000 -4 -2 0 2 4

mass (kg) mass (log kg)



How do these two
guantities vary togethere



Response & Explanatory Variables

> Y Is the response variable aka dependent variable

> X Is the explanatory variable aka independent variable
aka feafure

Which is which in our example®?
Y - Metabolic Rate

X — Mass

Because Kleiber's question is to explain metabolic rate in
terms of mass



Examine the
Joint Distribution

The histograms do not give us information
about how the two variables vary together



Klelber's

—

metabolic rate (kilocalories per day

50000

40000

30000

20000

10000

@)

500

1000

Data

1500 2000
mass (kg)

2500

3000

3500

One point
makes it difficult
to see the
relationship
between these
variables



Deviations of the observed metabolic
rate from the regression line

The error about the
regression line is the
root mean sgquare
error loss.

It is like an SD of the
regression line.
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A Log-Log Relationship Linearrelationship
between log(x) & log(y)

log(y) = a + blog(x)



A Log-Log Relationship Linearrelationship
between log(x) & log(y)

b Same b as above

Y = CI

We typically use “log” to represent the natural log.
The base does not impact the shape of the relationship.
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A Log-Log Relationship - interpretation
lOg(y) = a + blOg(15$) 50% increase in x

b b corresponds to @
y - C]-5 L 1.5Ab % change iny

Log-log relationships are usually expressed
In terms of %change in x and y



Method of least squares

Minimize the average squared loss (L, loss) when predicting
log(rate) from log(mass)

; ZZ'?; ka. moda\
1 ') 15 H:jcd‘
| ™ ¥
~ Y (log(yi) — [a +blog(®)])* swirctonnes
Aot

Here we minimize with respecttoa and b. 2 1o >
i AR
L=)
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Return 1o our Fitted line

Line has
slope 0.75

metabolic rate (log kilocalories per day)




Question: Do 720 cats
oroduce more heat than |
elephante

5 x 720 = 3600
3600 kg




What does the slope of the line tell use

log(rate) = a+0.751og(mass)

Or 075
rate X mass

If body mass of elephant is 720 times that of a cat, then
metabolic rate is 72097 = 140-fold greater than a cat’s



Question: Do 720 cats
oroduce more heat than |
elephante

YES!
140 cats have the same
metabolic rate as 1 elephant

3600 kg



Question: Why not just use
the values for cat and
elephant, rather than fitfing

a linee
If this relationship holds for
mammals in general then we gain

IN accuracy by using a line fitted

to all of the data 3600 kg




Question: If we feed our cat

enough to gain 3595 kg, will
It produce the same heat as

ol an elephante

That’s silly!

This is an observational study.

We have observed a relationship
between mass and metabolic rate. 3600 kg ¢ ¥
It is not a causal relationship.




Question: Can we estimate
the metabolic rate for a
135,00 kg blue whale using
our regression linee

Best not — It would mean
extrapolating well beyond the
range of the original data and we
don't know if the same linear

relationship still holds. 135000 kg




INnference &
Bootstrapping

Why Is the slope ¢



Why Is the slope Y4¢

» An alternative theory is that the exponent should be 2/3
because of the relationship between mass and surface

ared.

» The spherical cat:




Explain 2/3




Explain 2/3

mass « volume « diameter®

rate o surface area o diameter’

rate o« (diameter’)*/?

rate x massz/ 3




Why isn't the slope 2/3¢

Statistical Models are not the same as
physical models.

Statistical models can be used to infer
Statistical models can be used to predict




Test the hypothesis: slope = 2/3

Null Hypothesis: true slope is 2/3 AND

the observed difference between fitted coefficient and the
true coefficient of 2/3 is due fo chance in the sampling of
the mammals

How to get a sense of this chance?



Booftstrapping
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Bootstrapped Regression Coefficient

Py N Bootstrap Sampling
92l W ’”‘ p* — Distibution of the
» Coefficient

Bootstrap

Bootstrap Samples Coefficients



Booftstrapping - ldeas

The sample of mammals Imitate the data generation
should look like the process by sampling from
population of mammails the booftstrap population;

call it the booftstrap sample .
Substitute our sample for

the “population”; call it Fit a linear model to the
the bootstrap population bootstrap sample.

Repeat many fimes and examine the
variablility in the booftstrapped coefficient



Bootstrap the coefficient

>

BoTo’rs’rrop population: 19 (x,y) pairs of mass and metabolic
rate

Bootstrap sample gives us a boofstrap statistic - the slope of
the regression line

Take 10,000 bootstrap samples from the bootstrap population
Examine the distribution of bootstrapped coefficients.

If 2/3 Is not within the (0.025, 0.975) percentfiles of the
bootstrapped distribution of the Coefﬁmen’r then reject the
hypothesis



Booftstrap Sampling Distribution

Based on these percentiles we would
reject the hypothesis that the slope is

2/3. But...
o _ B Why does it
(Q ] — [
g s AT look like thate
S 8 4
30 I 1 e
3 .
e - | I i | | .
Does this mean
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Kleiber’s rule studied by Clarke (2010)

3

Slope
remains 3/4

metabolic rate (log kilocalories per day)




Statistical Models

» To be useful must be an accurate description of dato

» Can assist in discovery of physical facts or social
phenomena

» Physical models may suggest a particular relationship,
which we can fit and test.

» Wish to generalize beyond the subjects studied (even
when an entire population is studied)



Summary Poinfts

» With observational studies we cannot make causal
claims such as increasing mass by 1 kg leads to a
predicted increase in metabolic rate.

> |t's not a good idea to extrapolate beyond the range of
values observed.



Summary Poinfts

» Even a high correlation, need not mean the relationship

>
>

Is linear.

Residua

Depenc

plotfs help us defermine the adequacy of t

ne fit.

INg on the situation, we may be satisfied wi

1aKe

ess complex model that does not fit the data as well, if
the size of the errors are tolerable.



Extensions to Simple Linear Regression

» Multiple regression
> Linear algebra
» Geometric interpretation

» Qualitative variables
> explanatory (x)
> response (y)

» Prediction & Inference
» Probability Model
> Bias-Variance tradeoff



Extensions to Simple Linear Regression

» Variable Selection
» Feature engineering
» Test-train split
» Cross-validation
» Regularization

» Loss —L,, Ly, and Huber
»  Minimization - L,
» Gradient Descent



