Data 100 Lecture 6: Unboxing the Data

Congratulations!

You have **collected** or **been given** a box of data

What do you do next?

Begin predictive modeling and hypothesis testing?

Where did the box come from?

Data Deluge:

- Collected from an instrument
- Federal Survey
- Scraped from the Web
- Administrative data set

SCIENTISTS collected: CO₂ Measurements from the observatory at Mauna Loa GOVERNMENT collected: Drug Abuse Warning Network survey INFORMAL collection: Housing sale prices in the Bay Area right before the 2009 economic downturn https://www.sfgate.com/homesales/c/a/2008/04/27/REH S.tbl

Three Examples

- > SCIENTIFIC: tend to be clean and well documented
- GOVERNMENT: tend to be clean, well documented, and categorical
- INFORMAL: tend to need cleaning and not well documented

CO₂ levels at Mauna Loa Observatory

Data Collected by Scientific Instruments

Mauna Loa Volcano

Largest Volcano in world 4 km above sea level Summit 17 km above base On the Island of Hawaii

Data and photos available from Scripps Institute and NOAA

Sampling Frame – Mauna Loa Observatory

Far from any continent: air sampled is representative of the central Pacific.

High altitude: above the inversion layer where local effects may be present.

Measurements of atmospheric CO₂ since 1958 – longest continuous record

Acquiring the box of data

- Clean
- Well documented
- Simple structure
- Broadly shared
- Reproducibility is key to trusting findings

Look at it	These are Unix commands that we run from the
<pre>!file data/co2_mm_mlo.txt</pre>	Jupy let holebook
data/co2_mm_mlo.txt: ASCII text	
	There are similar
<pre>!wc data/co2_mm_mlo.txt</pre>	Python commands
810 5804 51131 data/co2_mm_mlo.txt	in the utils library,
<pre>!head -n 10 data/co2_mm_mlo.txt</pre>	e.g.,
#	
# USE OF NOAA ESRL DATA #	head()
<pre># These data are made freely available to the public and the # scientific community in the belief that their wide dissemina</pre>	tion
# WILL lead to greater understanding and new scientific insigh # The availability of these data does not constitute publication	ts. on
# of the data. NOAA relies on the ethics and integrity of the # ensure that ESRL receives fair credit for their work. If th	user to e data
# are obtained for potential use in a publication or presentat	ion,

.00	k	At It	V N	Vhat do ya Nake 4 obs	ou see? ervatic	ons abo	ut these data
# NOT! # depe # con # rea: # # CO2	E: In endin trol sons. expr	general, the g on recalibr procedures. O Usually the essed as a mo	e data prese ration of th Occasionally ese changes Dle fraction	ented for the la ne reference gas y, earlier years are minor. n in dry air, ma	ast year a s mixtures s may alsc icromol/mo	are subject used, and be changed	to change, other quality d for the same ated as ppm
# # (-!	99.99	missing data	a; -1 no da	ata for #daily n	means in m	onth)	
# (-! # #	99.99	missing data	a; -1 no da	ata for #daily n	means in m	wonth)	
# (-! # # #	99.99	missing data decimal date	a; -1 no da average	ata for #daily n interpolated	means in m trend season cor	onth) #days	
# (-! # # 1958	99.99 3	missing data decimal date 1958.208	a; -1 no da average 315.71	ata for #daily n interpolated (1 315.71	means in m trend season cor 314.62	wonth) #days r) -1	
# (- # # 1958 1958	99.99 3 4	missing data decimal date 1958.208 1958.292	a; -1 no da average 315.71 317.45	ata for #daily n interpolated (1 315.71 317.45	means in m trend season cor 314.62 315.29	Nonth) #days rr) -1 -1	
# (-! # # 1958 1958 1958	99.99 3 4 5	missing data decimal date 1958.208 1958.292 1958.375	a; -1 no da average 315.71 317.45 317.50	ata for #daily n interpolated (1 315.71 317.45 317.50	means in m trend season cor 314.62 315.29 314.71	wonth) #days rr) -1 -1 -1	
# (-! # # 1958 1958 1958 1958	99.99 3 4 5 6	missing data decimal date 1958.208 1958.292 1958.375 1958.458	a; -1 no da average 315.71 317.45 317.50 -99.99	ata for #daily n interpolated (1 315.71 317.45 317.50 317.10	means in m trend season cor 314.62 315.29 314.71 314.85	wonth) #days r) -1 -1 -1 -1 -1	
# (-! # # 1958 1958 1958 1958 1958	99.99 3 4 5 6 7	missing data decimal date 1958.208 1958.292 1958.375 1958.458 1958.542	a; -1 no da average 315.71 317.45 317.50 -99.99 315.86	ata for #daily n interpolated (1 315.71 317.45 317.50 317.10 315.86	means in m trend season cor 314.62 315.29 314.71 314.85 314.98	wonth) #days -1 -1 -1 -1 -1 -1	
<pre># (-! # # 1958 1958 1958 1958 1958 1958 1958 1958</pre>	99.99 3 4 5 6 7 8	missing data date 1958.208 1958.292 1958.375 1958.458 1958.542 1958.625	a; -1 no da average 315.71 317.45 317.50 -99.99 315.86 314.93	ata for #daily n interpolated (1 315.71 317.45 317.50 317.10 315.86 314.93	means in m trend season cor 314.62 315.29 314.71 314.85 314.98 315.94	wonth) #days rr) -1 -1 -1 -1 -1 -1 -1	
<pre># (-! # # 1958 1958 1958 1958 1958 1958 1958 1958</pre>	99.99 3 4 5 6 7 8 9	missing data decimal date 1958.208 1958.292 1958.375 1958.458 1958.542 1958.625 1958.708	a; -1 no da average 315.71 317.45 317.50 -99.99 315.86 314.93 313.20	ata for #daily n interpolated (1 315.71 317.45 317.50 317.10 315.86 314.93 313.20	means in m trend season cor 314.62 315.29 314.71 314.85 314.98 315.94 315.91	<pre>wonth) #days -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</pre>	

Observations about the file

- File appears to be plain text
- Column names appear on two lines of file
- Fields line up from one row to the next
- White space between fields

- Seven variables
- -99.99 appears in some rows for the "Average"
- -1 appears in all the first 5 rows for "days"

Identify the Structure & Granularity

- > What is the shape?
- > What does a record represent?
- > Have the data been aggregated,?
- > Do we need to aggregate?

Identify the Structure & Granularity

- What is the shape?
 What does a record represent?
 What does a record represent?
 Columns & 738 rows
 One month of CO₂ measurements
- Have the data been aggregated,?
- Do we need to aggregate?

Yes, they are aggregated to the month, via an average. We don't need to further aggregate.

Checking data quality

co2.describe()

	Yr	Мо	DecDate	Avg	Int	Trend	days
count	738.000000	738.000000	738.000000	738.000000	738.000000	738.000000	738.000000
mean	1988.417344	6.491870	1988.916667	350.472087	354.496057	354.483523	18.472900
std	17.768275	3.444944	17.765545	52.214201	28.113985	28.031320	12.200271
min	1958.000000	1.000000	1958.208000	-99.990000	312.660000	314.620000	-1.000000
25%	1973.000000	4.000000	1973.562750	328.587500	328.792500	329.730000	-1.000000
50%	1988.000000	6.000000	1988.916500	351.725000	351.725000	352.380000	25.000000
75%	2004.000000	9.000000	2004.271000	377.000000	377.000000	377.177500	28.000000
max	2019.000000	12.000000	2019.625000	414.660000	414.660000	411.840000	31.000000
25% 50% 75% max	1973.000000 1988.000000 2004.000000 2019.000000	4.000000 6.000000 9.000000 12.000000	1973.562750 1988.916500 2004.271000 2019.625000	328.587500 351.725000 377.000000 414.660000	328.792500 351.725000 377.000000 414.660000	329.730000 352.380000 377.177500 411.840000	-1.000 25.000 28.000 31.000

What happens?

- Ideally, the missingness is at random meaning it is not correlated with other variables
- > If missingness is correlated, that leads to biased inference
- If too many values for a field are missing, we may need to drop that field from our investigation
- > If we impute with averages, the variability is reduced

How does it happen?

- A field of a record may be lost, hidden, removed, replaced, or never entered.
- That record's entity does not have a particular attribute.
- e.g., person without a permanent address.

Revisit Sampling Frame

Sampling Frame (and Data)

- > How complete/incomplete is the frame (and its data)?
- > How is the frame/data situated in time?
- > How is the frame/data situated in place?
- How well does the frame/data capture reality?

MLO - CO₂ Data

- Complete/incomplete?
- ➢ Situated in time?
- ➢ Situated in place?
- > Capture reality?

7 records have a missing monthly average. We could use interpolated values or drop these records. – quite complete

Monthly records from Mar 1958 to Aug 2019 from Mauna Loa Observatory.

Unbox the Data

Unbox the Data

- ➤ How big is it?
- > What is the encoding?
- ➤ How is it formatted?
- ➤ How is it organized?

MLO - CO₂ Data

- How big is it? 738 records
- Encoding? ASCII plain text
- Formatting? White space and aligned fields
- > Organized? Table with 7 columns

Data File Formats	name,se Tom,m,7 Maya,f,	x,age,ht,wt,bmi,overWt 7,70,175,25.16239,TRUE 33,64,124,21.50106,FALSE
 Delimited values comma, tab, white space 	Joe, m, / Robert, Sue, f, 2 Liz, f, 3	9,73,185,24.45884,FALSE m,47,67,156,24.48414,FALSE 7,61,98,18.51492,FALSE 3,68,190,28.94981,TRUE
Fixed-width format		
Key-value pairs	Tom Maya	m777017525.16239TRUE f336412421.50106FALSE
name:Tom	Joe	m797318524.45884FALSE
sex:m age:77 ht:70 wt:175 bmi:25.16 overWt:TRUE	Robert Sue Liz	m476715624.48414FALSE f2761 9818.51492FALSE f336819028.94981TRUE

Log Files

Sometimes we need to work harder to extract fields from less structured text

```
169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET
/stat141/Winter04 HTTP/1.1" 301 328
"http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
```

169.237.6.168 - - [8/Jan/2014:10:47:58 -0800] "GET
/stat141/Winter04/ HTTP/1.1" 200 2585
"http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.0; .NET CLR 1.1.4322)"

Identify Granularity

- > What does a record represent?
 - > Do we have the correct number of records?
 - Are there duplicated records?
- Have the data been aggregated?Do the data need to be aggregated?
- > Do the data need to be combined from multiple tables?

Understanding and manipulating granularity can help reveal patterns and relationships

Rectangular Data

Two main variants

- 1. Tables (a.k.a. data-frames in R/Python and relations in SQL)
 - > Named columns with different types
 - Manipulate using data transformation languages
 map, filter, group by, join, sort

2. Matrices

- > All values have the same type
- Manipulate using multiplication, addition, and elementwise operations
- Most useful manipulation is linear, described by linear algebra

Check Quality

Check Quality

- > Are the data values reasonable?
- > Are there missing or corrupted values?
- > Are the value-codings useful for analysis?
- > Do we need to extract a feature from a complex value?
- > Do field dependencies check out?

Substance Abuse & Mental Health Data Archive	MHDA HOME ABOUT DATA LATEST ANALYZE FAQS
Drug Abuse Warning Network (DAWN)	Studies in this Series
he Drug Abuse Warning Network (DAWN) is a nationally represented public health surveillance stem that continuously monitors drug-related visits to hospital emergency departments (EDS). A MNN core is any ED with involving repeated drug use that is implicated in the ED with DAWN.	DAWN-2011 Drug Abuse Warning Network
Awr case is any EO visit involving recent drug use that is implicated in the ED visit. Dawr captures oth ED visits that are directly caused by drugs and those in which drugs are a contributing factor, but othe direct cause of the ED visit Annually. DAWN produce settimates of drug-related visits to	DAWN-2010 Drug Abuse Warning Network
ospital EDs for the nation as a whole and for selected metropolitan areas.	DAWN-2009
AWN is used to monitor trends in drug misuse and abuse, identify the emergence of new substances nd drug combinations, assess health hazards associated with drug abuse, and estimate the impact of rug misuse and abuse on the Nation's health care system. DAWN relies on a longiturinal probability.	Dawn-2008 Drug Abuse Warning Network
ample of hospitals located throughout the United States.	DAWN-2007
o be eligible for selection into the DAWN sample, a hospital must be a non-federal, short-stay, eneral surgical and medical hospital located in the United States, with at least one 24-hour ED. The ataset includes democraphics, drugs involved in the ED visit (up to 16 drugs from 2004 through)	DAWN-2006 Drug Abuse Warning Network
008 and up to 22 drugs from 2009 through 2011), toxicology confirmation, route of administration, /pe of case, and disposition of the patient following the visit.	DAWN-2005 Drug Abuse Warning Network
repared DAWN Emergency Department National and Metro data tables are available on the DAWN	DAWN-2004 Drug Abuse Warning Network

Sampling Frame Sampling Frame

- > Frame ER visit for a drug related reason
- Situated in time 2011
- > Situated in place Emergency Rooms in the US
- Capture reality complex sampling scheme based on probability

CASETYPE	TYPE OF	TYPE OF VISIT			
ocation: /ariable Type:	n: 1214-1214 (width: 1; decimal: 0) > Type: numeric				
	Value	Label	Unweighted Frequency	%	Valid %
	1	SUICICDE ATTEMPT:(1)	9033	3.9 %	3.9%
	2	SEEKING DETOX:(2)	14841	6.5 %	6.5%
	3	ALCOHOL ONLY (AGE < 21):(3)	7421	3.2 %	3.2%
	4	ADVERSE REACTION:(4)	88096	38.4 %	38.4%
	5	OVERMEDICATION:(5)	18146	7.9 %	7.9%
	6	MALICIOUS POISONING:(6)	793	0.3 %	0.3%
	7	ACCIDENTAL INGESTION:(7)	3253	1.4 %	1.4%
	8	OTHER:(8)	87628	38.2 %	38.2%

Here's the Data: 34565-0001-Data.txt NOW WHAT? How big is it? What is the encoding? How is it formatted? The Codebook tells us all of this, but let's take a look

Look at One Record!

: !head -n 1 data/34565-0001-Data.txt

Investigation

Rather than read all of the fields into the data frame, let's focus on age and the type of ER visit.

Read the Data into a Data Frame

```
colspecs =

[(0,6), (14,29), (33,35), (35, 37), (37, 39), (1213, 1214)]

varNames = ["id", "wt", "age", "sex", "race", "type"]

dawn = pd.read_fwf('data/34565-0001-Data.txt',

colspecs=colspecs, header=None,

index_col=0, names = varNames)
```


Look at the Data Again

dawn.t	ail()				
	wt	age	sex	race	type
id					
229207	4.203385	11	2	1	4
229208	4.215246	9	2	1	8
229209	4.139613	8	2	-8	4
229210	1.601442	1	2	2	4
229211	5.261895	10	2	2	4

Fix the column specifications. Now how does it look?

	C	CASETY	PE		TYPE OF	= VISIT			
	L	ocation:			1214-121	14 (width: 1; decimal: 0)			
	١	/ariable [·]	Туре:		numeric				
dawn	arour	by (['	tuno' l	() count()	Value	Label	Unweighted Frequency	%	Vali
uawii	.group	, Б У([cype]	[).count()	1	SUICICDE ATTEMPT:(1)	9033	3.9 %	3
				r000	2	SEEKING DETOX:(2)	14841	6.5 %	6
	wi	aye	Sex	lace	3	ALCOHOL ONLY (AGE < 21):(3)	7421	3.2 %	3
type					4	ADVERSE REACTION:(4)	88096	38.4 %	38
1	9033	9033	9033	9033	5	OVERMEDICATION:(5)	18146	7.9 %	7
2	14841	14841	14841	14841	6	MALICIOUS POISONING:(6)	793	0.3 %	C
3	7421	7421	7421	7421	7	ACCIDENTAL INGESTION:(7)	3253	1.4 %	1
4	88096	88096	88096	88096	8	OTHER:(8)	87628	38.2 %	38
5	18146	18146	18146	18146	Based up	oon 229211 valid cases out of 229211 total cases.			
6	793	793	793	793					
7	3253	3253	3253	3253	Con	npare the groupby co	unts		
8	87628	87628	87628	87628	to th	ne codebook			

	SEX	GENDE	R			
	Location:	36-37 (w	ridth: 2; decimal: 0)			
	Variable Type:	numeric				
	Range of Missing Values (M):	-8	l -h-l	l laura induta d	0/	V-li-l 0/
		value	Laber	Frequency	%	valid %
		1	MALE:(1)	119111	52.0 %	52.0%
		2	FEMALE:(2)	110030	48.0 %	48.0%
		-8 (M)	NOT DOCUMENTED:(-8)	70	0.0 %	-
<pre>total = dawn['wt']</pre>].sum()					
<pre>total = dawn['wt'] total</pre>].sum()		Unweighted	av <u>g</u> : 48%	6 fer	nale
<pre>total = dawn['wt'] total 5067374.131010554</pre>].sum()		Unweighted ov Weighted av	avg: 48% g: 52% fe	6 fer ema	nale Ile
<pre>total = dawn['wt'] total 5067374.131010554 np.average((dawn["s</pre>].sum() sex"] == 2), weights=d	dawn["v	Unweighted (Weighted av	avg: 48% g: 52% fe	6 fer ema	nale Ile
<pre>total = dawn['wt'] total 5067374.131010554 np.average((dawn["s 0.523468490709998</pre>].sum() sex"] == 2), weights=c	lawn["v	Unweighted (Weighted av	avg: 48% g: 52% fe	6 fer ema	nale Ile

	۲1	p	е	Example of Weighting
:	sex	wage	wt	What's the unweighted
	1	20	1.0	proportion of females?
	0	5	0.5	
	0	5	0.5	
	0	5	0.5	What's the weighted
	1	20	1.0	proportion?
	0	5	0.5	
	0	5	0.5	
	1	20	1.0	What's the unweighted
	1	20	1.0	median waae?
	0	5	0.5	
	0	50	0.5	
	0	50	0.5	What's the weighted median wage?

				·	
5	ex	wage	wt	Unweighted prop	ortion of
)	1	20	1.0	females?	2/3
I	0	5	0.5		2,0
2	0	5	0.5	<i>.</i>	0.1.10
3	0	5	0.5	Weighted proport	on? 1/2
1	1	20	1.0		
5	0	5	0.5		
6	0	5	0.5		_
7	1	20	1.0	Unweighted med	ian
3	1	20	1.0	waae?	\$12.50
9	0	5	0.5		T ·
)	0	50	0.5		
I	0	50	0.5	What's the weigh median wage?	ted \$20.00

When the Data Are in Multiple Tables