Data Science 100 Principles & Techniques of Data Science

Slides by:

Deborah Nolan

deborah_nolan@berkeley.edu

Announcements for Today

- The class has been enlarged and the wait list is operating.
- If you are a graduate student not on the waitlist, try to get on it ASAP.
- > Annotated slides are added after class
- HW 2 will be released tonight and due 11:59 Wednesday Sep 11
- Office hours are found at <u>http://ds100.org/fa19/calendar</u>

Topics for Today

- How to solve probability problems
- Review random variables, probability distribution, expectation and variance
- Review Error, Loss, and Risk and the Relationship between the Data and the "World"

> An Example

How do we solve probability problems?

Basic Approaches

- Symmetry and Analogy
- Counting and equally likely
- Trees and conditional probability

Recall our group of 10 mothers

	Number of Children				
	1	2	3	4+	
Count	2	4	3	1	
Proportion	20%	40%	30%	10%	

- \succ Select a mother at random from the 10, record her #kids
- \succ Do not replace
- Repeat for a total of 3 samples

Recall our group of 10 mothers

	Number of Children				
	1	2	3	4+	
Count	2	4	3	1	
Proportion	20%	40%	30%	10%	

What is the chance the second mom selected has 1 child?

Symmetry & Analogy

- Urn with 10 marble one for each mother, indistinguishable except for the # written on it
- Box with 10 indistinguishable tickets, except for the # on it
- Deck of 10 indistinguishable cards, except for the # on the flip side

Symmetry & Analogy

- Draw marbles from well mixed urn
- Select tickets from well mixed box
- > Deal cards from top of well shuffled deck
- Deal cards from bottom of well shuffled deck

```
Thise 4 scenarios are all
aguivalent to choosing
mothers to participate in a survey
```

Symmetry & Analogy

 \succ Chance the second draw is 1

Counting

- > 10 people named A, B, C, D, E, F, G, H, I, J
- With values 1, 1, 2, 2, 2, 2, 3, 3, 3, 4

- Name each mother so we can track the combinations
- Number of Combinations of first and second draws
- Number of Combinations where the second draw is 1
- Since each combination is equally likely, we take the ratio of these two counts to get the probability

ABCD... 1122... Counting Chance the second draw is 1 # comb of 2 mons? $10 \times 9 = 90$ order matters. A,B B,A 2 # comb w/ 2nd more. has 1 child $\dot{C}, A C, B \int 8 \times 2$ J, A J, B $18 = \frac{2}{10}$ 18 total

Tree and Conditioning

Two step process.

Only need to track whether card is 1 or not.

If you know the result of the first draw, compute the conditional chance of the second draw.

dram 2 10 Tree and Conditioning not Chance the second draw is 1. Probabilities go on branches Probabilities From the same not 1 node sum to 1 hot probabilities are conditional 6 16 90 on the information about (the path on the tree that was traveled to get there) Multiply down the tree to get the chance of the final result Add across the bottom

Many approaches to figuring out probabilities

- > Get good at one
- But be flexible and try multiple approaches

FUN PROBLEM: There are 3 cards, one has a circle on both sides, one has a square on both sides, and the third has a circle on one side and square on the other. Mix them up and place one card on the table. It displays a circle. What's the chance there is a circle on the reverse side?

Working formally with Random Variables

0-1 Random Variables

- In discussion yesterday, you worked with random variables that take on the 0 or 1 values
- > We will start with it as an example

$$(X) = 0 \text{ with prob } 1 - p \text{ or } Z$$
Chance
$$Process = 1 \text{ with prob } p$$

$$V \text{ Random Unknown value}$$

Examples? Medical Trials Games of Chance Survey Results Randon occurrences in Natur

Probability Distribution $\begin{array}{c|c} x & 0 & 1 \\ \hline P(x) & I-p & P \end{array}$ $H(X) = O_{(1-p)} + 1_{p} = p$ $V_{GV}(X) = \mathbb{E}(X-p)^{2} = (0-p)^{2}(1-p) +$ $= p^{2}(1-p) + p(1-p)^{2} = p(1-p)p_{1-p}$ = p(1-p)

Expected Value and Variance

$$\mathbb{E}(X) = \rho$$
For what value of ρ
is $Van(X)$ largest

$$\operatorname{Var}(X) = \operatorname{pli-pl}$$

More Generally, Expected Value and Variance of a Discrete RV

More Generally
$$= \alpha \underbrace{\mathbb{E}}_{j=1}^{\infty} (\alpha x_{j} + b) p_{j} = \alpha \underbrace{\mathbb{E}}_{j=1}^{\infty} x_{j} p_{j} + b \underbrace{\mathbb{E}}_{j=1}^{\infty} p_{j}$$
$$= \alpha \underbrace{\mathbb{E}}_{i}(X) + b$$

$$\mathbb{E}(aX+b) = \mathbf{aF(X)+b}$$

$$\begin{aligned} & \mathbb{V}ar(aX+b) = [\alpha[\sqrt{an(X)}] \\ & = \mathbb{E}[\alpha X + b - (\alpha \mathbb{E}(X) + b)]^{2} \\ &= \mathbb{E}[\alpha X - \alpha \mathbb{E}(X)]^{2} \\ &= \mathbb{E}[\alpha X - \alpha \mathbb{E}(X)]^{2} \\ &= \mathbb{E}[\alpha X_{j} - \alpha \mathbb{E}(X)]^{2} \\ &= \mathbb{E}[\alpha X_{j}$$

Expected Value

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_i) + \dots + \mathbb{E}(X_n)$$

for both
ind
4 dep X_{is}

Variance

If Independent

$$\overline{\mathbb{V}ar(X_1 + \dots + X_n)} = \mathbb{V}_{\mathrm{Gv}}(X_1) + \dots + \mathbb{V}_{\mathrm{Gi}}(X_n) = n p(1-p)$$

If From a Simple Random Sample

$$\mathbb{V}ar(X_1 + \dots + X_n) = \prod_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N} \\ q \neq 0}} n p(1-p)$$

$$\mathbb{N} = pop size \qquad \qquad \mathbb{N} - n \quad Finite pop correction \\ \text{with large populations three is little difference between SRS4 independent draws }$$

Probability Distribution

- Roll a fair die 5 times.
- \gg N_F = number of evens,
- $> N_{\rm P} = \text{number of primes} 3 \text{ or } 5$
- \succ N₁ = number of 1s

F

$$P(N_1 = 1, N_{\mathbf{P}} = 2, N_E = 2) =$$

$$P(N_{1} = 1, N_{F} = 2, N_{E} = 2) = P(3or5) = 2$$

$$P(1V_{1} = 1, N_{F} = 2, N_{E} = 2) = P(3or5) = 2$$

$$P(3or5) = 2$$

P(1) = -

P(Even)

5! #arrangements of 5 unique things 1! 2! 2! The Es are interchangeable $P(N_{1}=1, N_{T}=2, N_{E}=2) = \frac{5!}{1! 2! 2!} \left(\frac{1}{6}\right)^{2} \left(\frac{1}{3}\right)^{2} \left(\frac{1}{2}\right)^{2}$ This is a trinomial distribution The parameters are: $n=5(P_1, P_2, P_3)$

Skip Ahead to Slide 53 The next 7 slides are a review of Error, Loss, & Risk

Summary Statistics as Estimators of Population Parameters

Data Life Cycle

Generalization

The Simple Random Sample

- > Suppose we have a population with N subjects
- > We want to sample **n** of them
- The SRS is a random sample where every unique subset of n subjects has the same chance of appearing in the sample
- This means each person is equally likely to be in the sample

Empirical (Data)

DATA: $x_1, x_2, ..., x_n$

The sample that we have to work with

Model (World)

Random Variables: $X_1, X_2, ..., X_n$

Probability distribution from, e.g., a SRS from the population

Empirical (Data)

DATA: $x_1, x_2, ..., x_n$

Summary statistic that minimizes the empirical risk $\frac{1}{n}\sum_{i=1}^{n} l(x_i - c)$

Model (World)

Random Variables: $X_1, X_2, ..., X_n$

Probability parameter that minimizes the Risk

$$\mathbb{E}l(X-c)$$

Empirical (Data)

DATA: $x_1, x_2, ..., x_n$

Summary statistic that minimizes the empirical risk

For l_2 loss, \bar{x} minimizes the average loss

Model (World)

Random Variables: $X_1, X_2, ..., X_n$

Probability parameter that minimizes the Risk

For l_2 loss, $\mathbb{E}(X)$ minimizes the average loss

Empirical (Data) Model (World)

Connect the sample average and expected value: \bar{X} is a random variable

$$\mathbb{E}(\bar{X}) = \mathbb{E}(X)$$

SRS of 400 vs Administrative Sample of 80,000

The expected value of a sample average from a SRS is **unbiased**

Its variability is quantifiable – the **sampling error**

sample average number of children born to women aged 40-44

Data Life Cycle

Generalization

Data Design/ Generation

Probability Samples give us Representative Data where the sample average is well behaved and an accurate estimate of the population average

An Example: Wait Time for a Repair

Data Life Cycle

Question

What is the typical wait time for a PG&E repair?

Context

PG&E must report to a utilities commission about its service record.

How might we/they focus this question?

The Question gives focus to the Population that we want to study

Sompling

SAMPLE

Scenario: Administrative Data

The Data

x_1, x_2, \dots, x_n every wait time over a 3 month period

Can we provide a summary statistic?

Why is the sample median such a desirable summary?

Summarizing the Data

DATA: $x_1, x_2, ..., x_n$ where *n* is 1665 for our data

ERROR: $x_1 - c, x_2 - c, ..., x_n - c$

LOSS: $l: R \rightarrow R^+$

Minimize the Average L_1 Loss

Minimize the Average Absolute Error

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-c|$$

- -

Data Life Cycle

Generalization

Data Design/ Generation

Probability Samples give us Representative Data where the sample median is a good estimate of the population

Where does Probability Sampling Come into this Problem?

Probabilistic Behavior of the Median

- \succ Not as simple to work with as the mean
- We need to make more assumptions about the underlying probability distribution of X
- In many circumstances the sample median is wellbehave and close to the median(X)

HW 2 Introduction

2016 Presidential Election

- > Outcome took many by surprise
- > Most polls were predicting Clinton victory was 90%
- FiveThirtyEight said 70% and a couple of days before indicated that Trump had a chance to win
- Now that the election has passed, we have the opportunity to see the world (voters who voted in the election)

We have a record on the # Trump votes # Clinton votes # Other votes

We can simulate the polls to see the sampling distribution of: (# T votes - # C votes) / Total Votes Sampled

Population: Pennsylvania voters

We can introduce a little bias

Simulate the polls to see the sampling distribution of the biased sampling frame: (# T votes - # C votes) / Total Votes Sampled