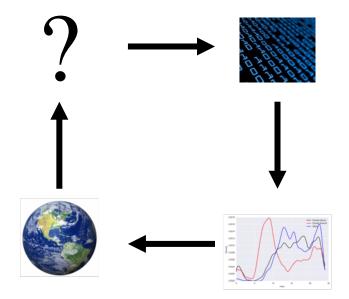
Big Data Analytics Map-Reduce and Spark

Slides by: Joseph E. Gonzalez

jegonzal@cs.berkeley.edu

With revisions by: Josh Hug hug@cs.Berkeley.edu



From SQL to Big Data (with SQL)

➤ Last week...

- Databases
- (Relational) Database Management Systems
- SQL: Structured Query Language
- > Today
 - More on databases and database design
 - Enterprise data management and the data lake
 - Introduction to distributed data storage and processing
 - > Spark

Operational Data Store

Data Warehouse

ROLLUP

Drill Down

ETL (Extract, Transform, Load)

CUBE

Snowflake Schema

Schema on Read

Data in the Organization

A little bit of buzzword bingo!

Star Schema

OLAP (Online Analytics Processing)

Data Lake

Inventory

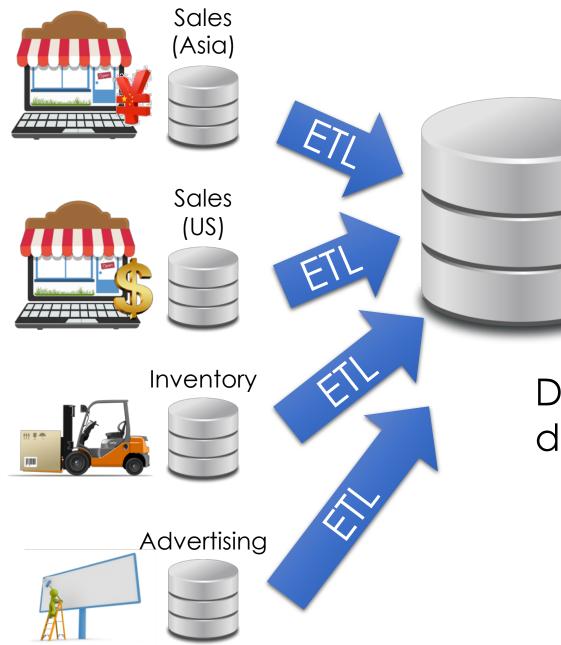
How we like to think of data in the organization

The reality...

Operational Data Stores

- > Capture the now
- Many different databases across an organization
- Mission critical... be careful!
 - Serving live ongoing business operations
 - Managing inventory
- > Different formats (e.g., currency)
 - > Different schemas (acquisitions ...)
- Live systems often don't maintain history

We would like a consolidated, clean, historical snapshot of the data.



Collects and organizes historical data from multiple sources

Data is periodically **ETL**ed into the data warehouse:

- Extracted from remote sources
- Transformed to standard schemas
- Loaded into the (typically) relational (SQL) data system

<u>**E**</u>xtract \rightarrow <u>**T**</u>ransform \rightarrow <u>L</u>oad (ETL)

Extract & Load: provides a snapshot of operational data

- Historical snapshot
- > Data in a single system
- Isolates analytics queries (e.g., Deep Learning) from business critical services (e.g., processing user purchase)
- ➤ Easy!

Transform: clean and prepare data for analytics in a unified representation

- \succ **Difficult** \rightarrow often requires specialized code and tools
- Different schemas, encodings, granularities



Collects and organizes historical data from multiple sources

How is data organized in the Data Warehouse?

Example Sales Data

5

pname	category	price	qty	date	day	city	state	country
Corn	Food	25	25	3/30/16	Wed.	Omaha	NE	USA
Corn	Food	25	8	3/31/16	Thu.	Omaha	NE	USA
Corn	Food	25	15	4/1/16	Fri.	Omaha	NE	USA
 Galaxy	Phones	18	30	1/30/16	Wed.	Omaha	NE	USA
table: m Substantial and acces	redundan			ive to store	Thu.	Omaha	NE	USA
Make misto	akes while	updati	ng		Fri.	Omaha	NE	USA
uld we oı ciently?	rganize tł	ne do	ita ma	ore ^{30/16}	Wed.	Omaha	NE	USA
Peanuts	Food	2	45	3/31/16	Thu.	Seoul		Korea

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Products

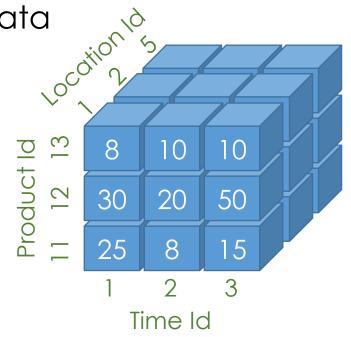
pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

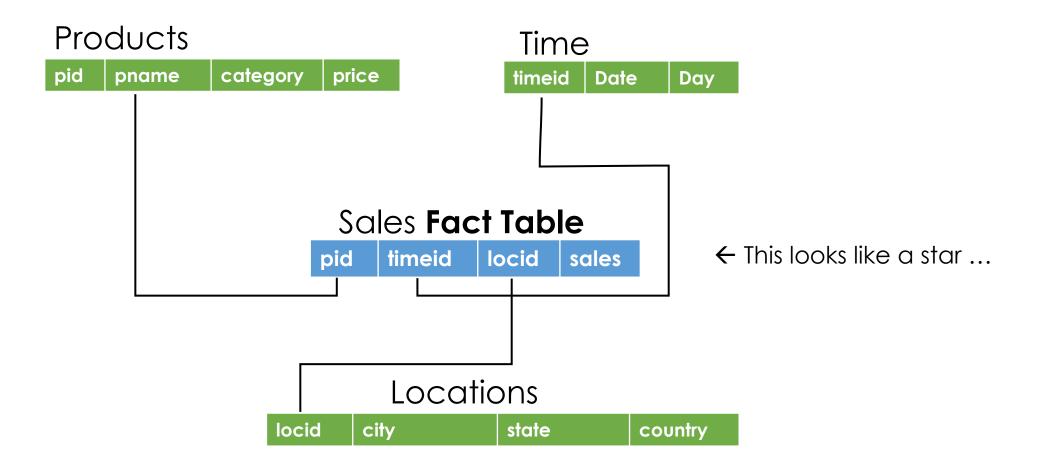
timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

Dimension Tables

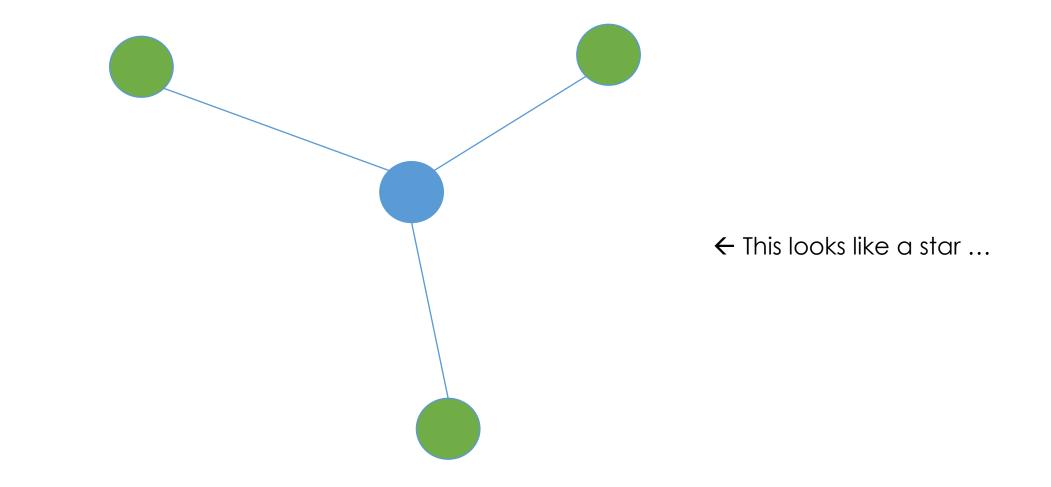
Multidimensional "Cube" of data



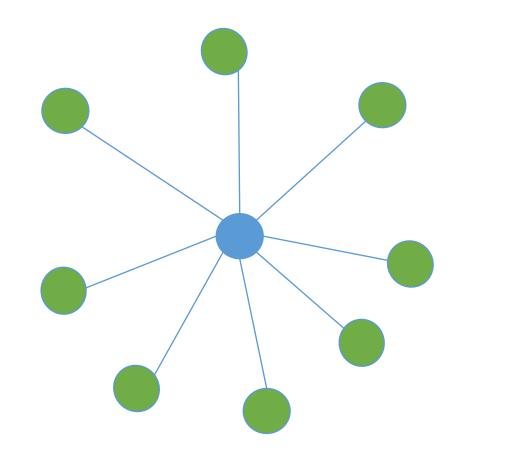
The Star Schema



The Star Schema

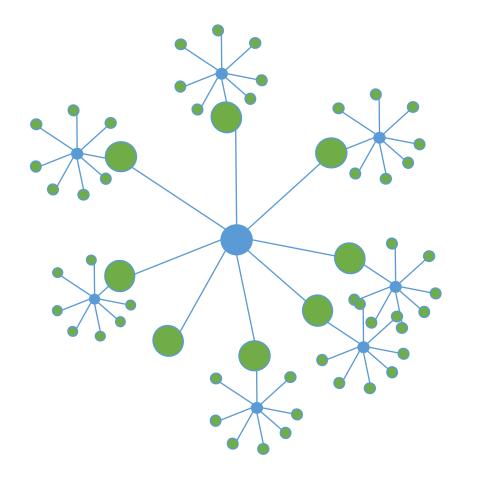


The Star Schema



 \leftarrow This looks like a star ...

The Snowflake Schema



 \leftarrow This looks like a snowflake ...

See CS 186 for more!

Online Analytics Processing (OLAP)

Users interact with multidimensional data:

- Constructing ad-hoc and often complex SQL queries
- Using graphical tools that to construct queries
 e.g. Tableau

Let's discuss some common types of queries used in OLAP.

Cross Tabulation (Pivot Tables)

ltem	Color	Quantity				ltem	
Desk	Blue	2			Desk	Sofa	Sum
Desk	Red	3	<u> </u>	Blue	2	4	6
Sofa	Blue	4	olor	Red	3	5	8
Sofa	Red	5	O	Sum	5	9	14

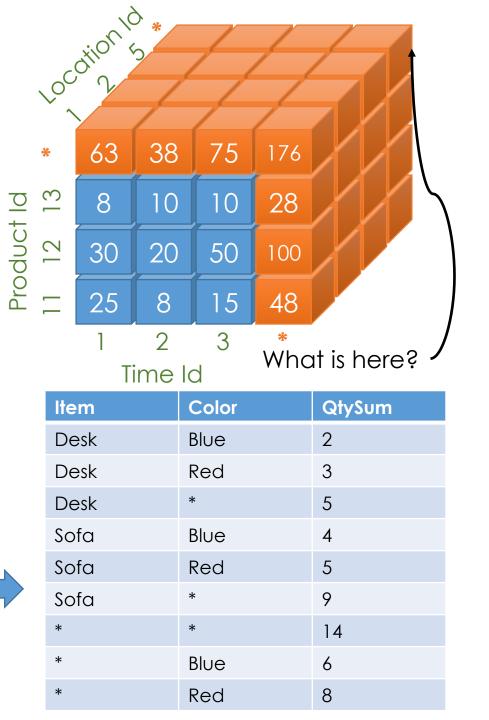
- > Aggregate data across pairs of dimensions
 - Pivot Tables: graphical interface to select dimensions and aggregation function (e.g., SUM, MAX, MEAN)
 - > GROUP BY queries
- Related to contingency tables and marginalization in stats.
- > What about many dimensions?

Cube Operator

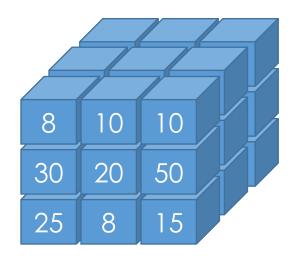
Generalizes crosstabulation to higher dimensions.

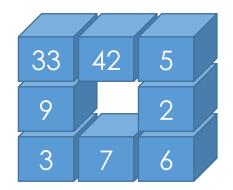
➢In SQL:
SELECT Item, Color, SUM(Quantity) AS QtySum
FROM Furniture
GROUP BY <u>CUBE</u> (Item, Color);

Item	Color	Quantity
Desk	Blue	2
Desk	Red	3
Sofa	Blue	4
Sofa	Red	5

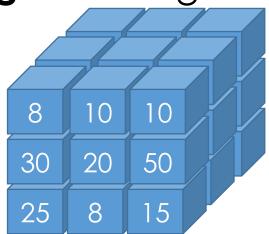


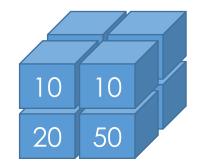
> Slicing: selecting a value for a dimension



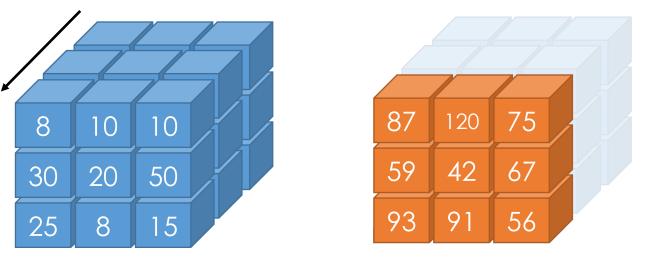


> **Dicing:** selecting a range of values in multiple dimension



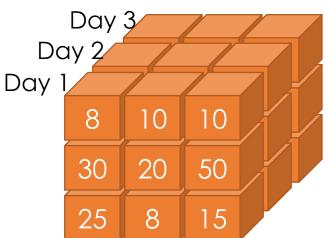


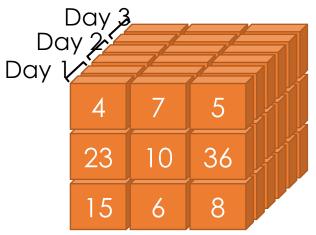
Rollup: Aggregating along a dimension



Similar to CUBE

> **Drill-Down:** de-aggregating along a dimension





Reporting and Business Intelligence (BI)

- > Use high-level tools to interact with their data:
 - Automatically generate SQL queries
 - > Queries can get big!
- Common!

Collects and organizes historical data from multiple sources

<u>So far ...</u>

- Star Schemas
- Data cubes
- OLAP Queries

Collects and organizes historical data from multiple sources

- How do we deal with semistructured and unstructured data?
- Do we really want to force a schema on load?

iid	date_taken	is_cat	is_grumpy	image_data	
45123 1333	01-22-2016	1	1	00	
47234 2122	06-17-2017	0	1		
57182 7231	03-15-2009	0	0		
23847 2733	05-18-2018	0	0		

Collects and organizes historical data from multiple sources

How do we deal with semistructured and unstructured data?

Unclear what a good schema for this image data might look like. Something like above will work, but it is inflexible! Do we really want to force a schema on load?

Data Lake*

Store a copy of all the data

- ➢ in one place
- ➢ in its original "natural" form

Enable data consumers to choose how to transform and use data.

Schema on Read

What could go wrong?

*Still being defined...[Buzzword Disclaimer]

The Dark Side of Data Lakes

- Cultural shift: Curate -> Save Everything!
 Noise begins to dominate signal
- Limited data governance and planning Example: hdfs://important/joseph_big_file3.csv_with_json
 - > What does it contain?
 - > When and who created it?
- \succ No cleaning and verification \rightarrow lots of dirty data
- > New tools are more complex and old tools no longer work

Enter the data scientist

A Brighter Future for Data Lakes

Enter the data scientist

- > Data scientists bring new skills
 - Distributed data processing and cleaning
 - > Machine learning, computer vision, and statistical sampling

> Technologies are improving

- > SQL over large files
- > Self describing file formats (e.g. Parquet) & catalog managers
- > Organizations are evolving
 - Tracking data usage and file permissions
 - New job title: data engineers

How do we **store** and **compute** on large unstructured datasets

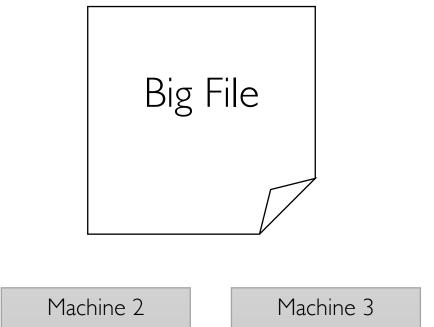
➢ Requirements:

- Handle very large files spanning multiple computers
- Use cheap commodity devices that fail frequently
- Distributed data processing quickly and easily
- \succ Solutions:
 - ▶ Distributed file systems → spread data over multiple machines
 ▶ Assume machine failure is common → redundancy
 - - ➤ Assume machine failure is common → redundancy
 - ➤ Functional programming computational pattern → parallelism

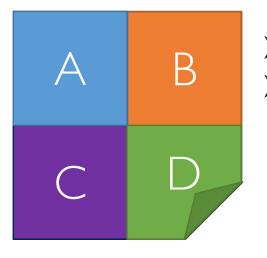
Distributed File Systems Storing very large files

Big File

How do we **store** and **access** very **large files** across **cheap** commodity devices ?

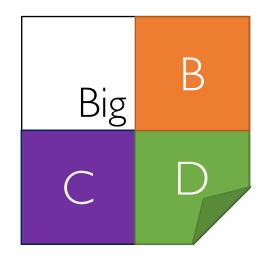


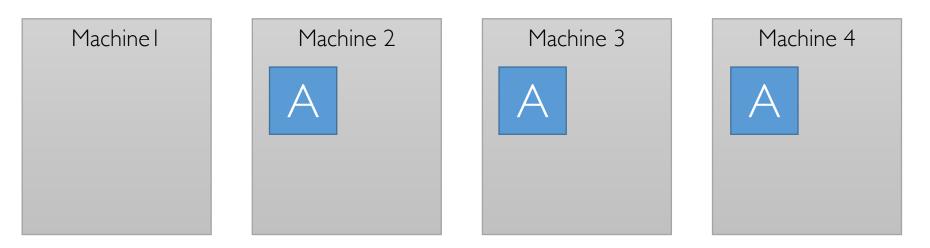
Machinel	Machine 2	Machine 3	Machine 4

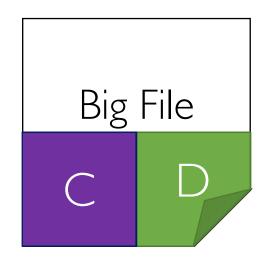


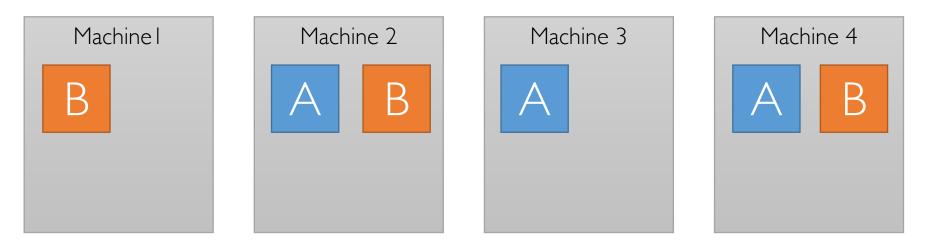
- Split the file into smaller parts.How?
 - > Ideally at record
 - boundaries
 - > What if records are big?

Machinel	Machine 2	Machine 3	Machine 4

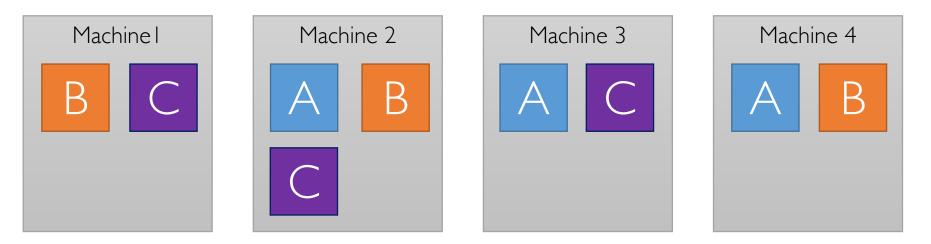




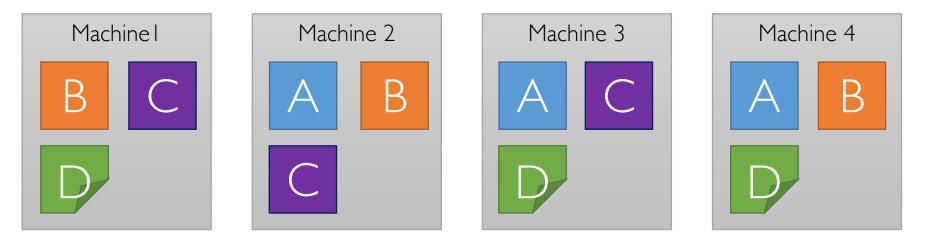








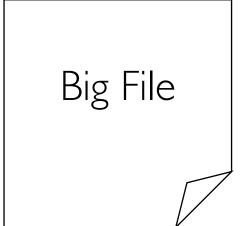


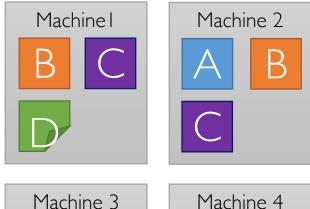


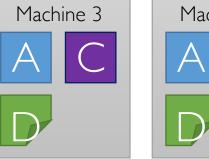
Fault Tolerant Distributed File Systems

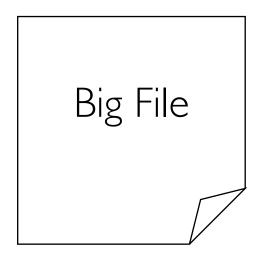
- Split large files over multiple machines
 Easily support massive files spanning machines
- Read parts of file in parallel
 - Fast reads of large files
- Often built using cheap commodity storage devices

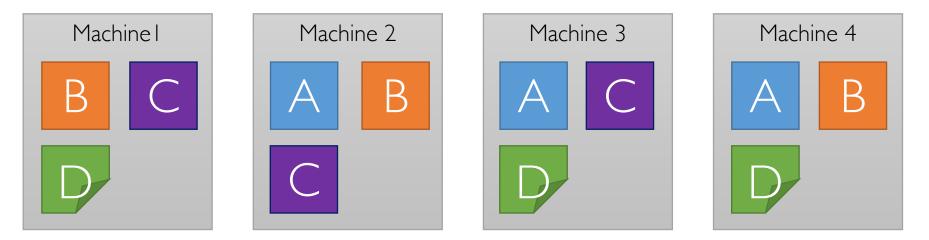
Cheap commodity storage devices will fail!

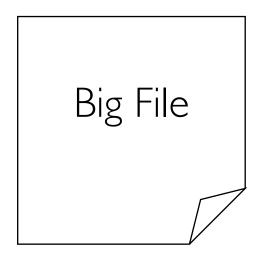


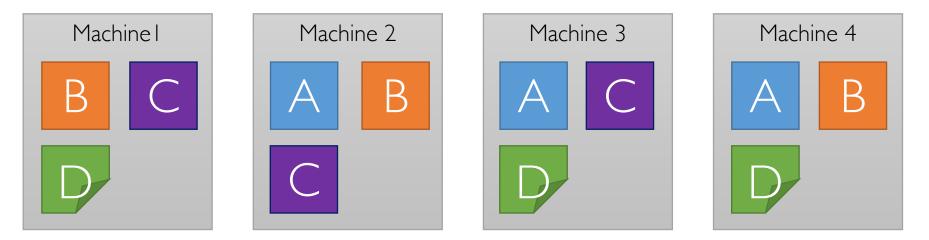


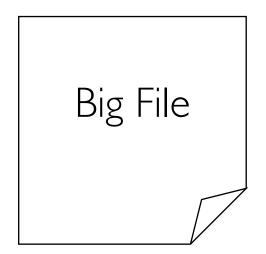


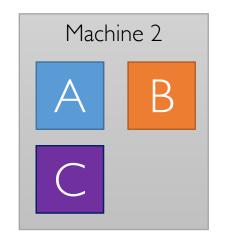


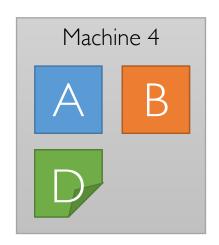


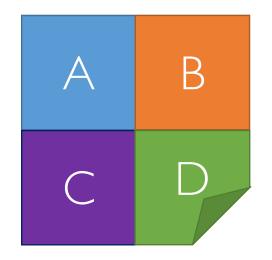


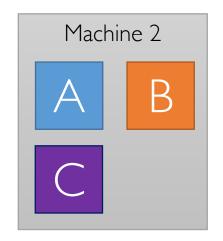


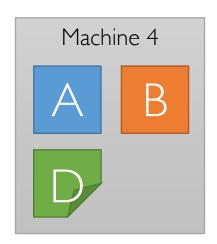






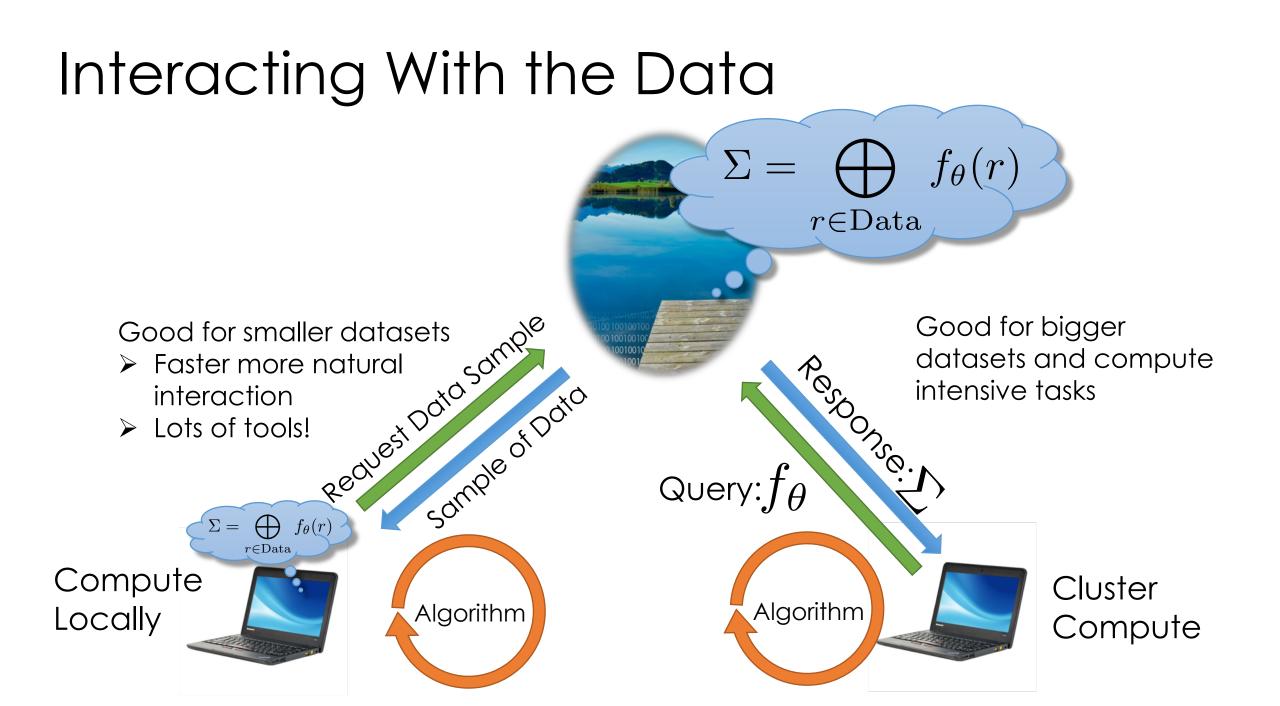




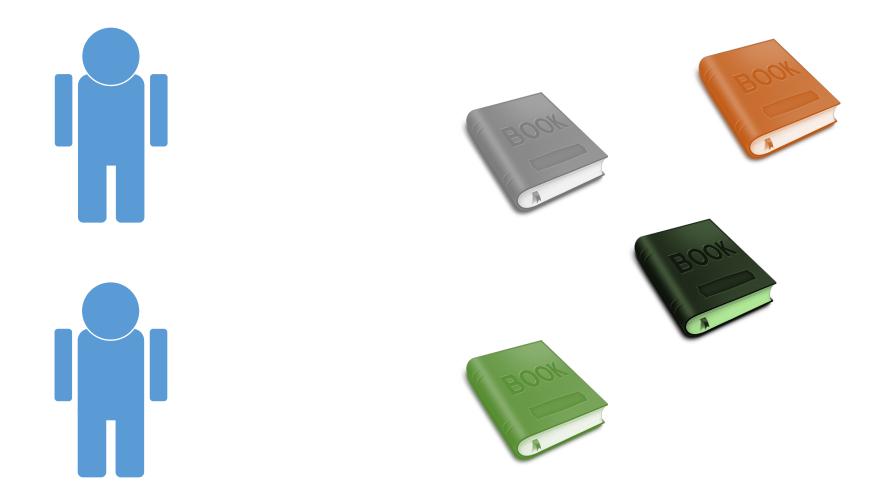


Map-Reduce Distributed Aggregation

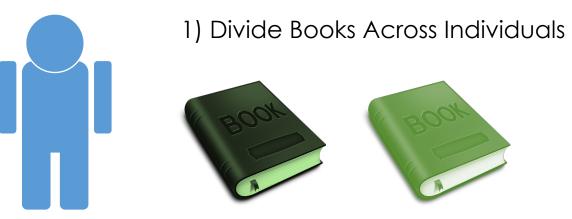
Computing across very large files



How would you compute the number of occurrences of each word in all the books using a team of people?

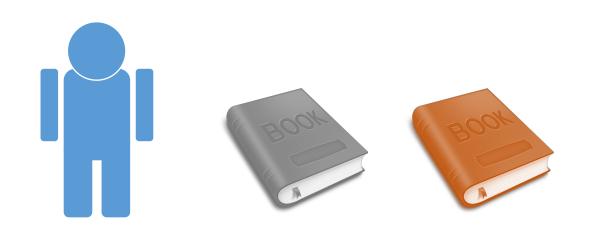


1) Divide Books Across Individuals

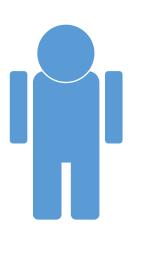


2) Compute Counts Locally

Word	Count
Apple	2
Bird	7



Word	Count
Apple	0
Bird	1

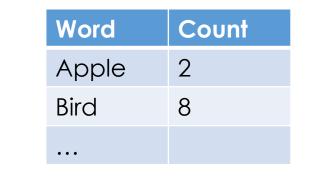


1) Divide Books Across Individuals

2) Compute Counts Locally

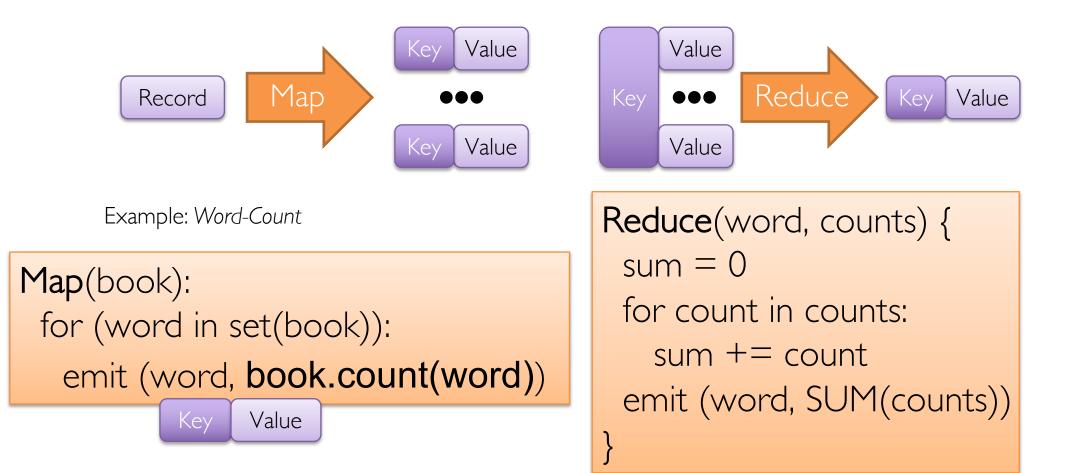
Word	Count
Apple	2
Bird	7

3) Aggregate Tables

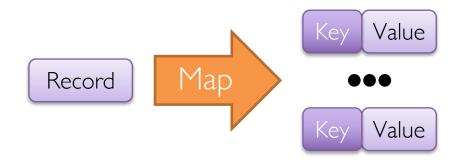


Word	Count
Apple	0
Bird	1

The Map Reduce Abstraction

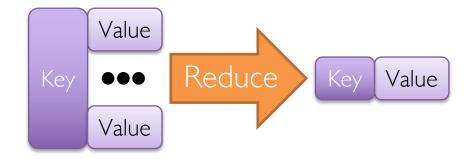


The Map Reduce Abstraction (Simpler)



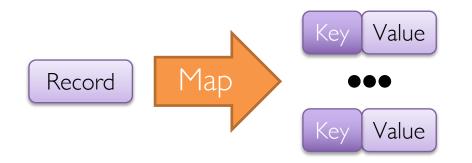
Example: Word-Count

Map(book): for (word in book): emit (word, 1) Key Value



Reduce(word, counts) {
 sum = 0
 for count in counts:
 sum += count
 emit (word, SUM(counts))
}

The Map Reduce Abstraction (General)



Key ••• Reduce Key Value Value

Example: Word-Count

Map(record, f): for (key in record): emit (key, f(key)) Key Value Reduce(key, values, f) { agg = f(values[0], values[1]) for value in values[2:]: agg = f(agg, value) emit (word, agg)

Map: Deterministic Reduce: Commutative and Associative

[Dean & Ghemawat, OSDI'04]

Key properties of Map And Reduce

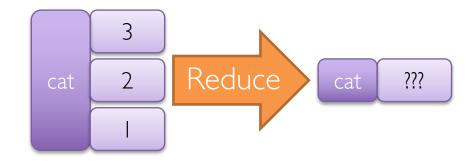
- > Deterministic <u>Map</u>: allows for re-execution on failure
 - > If some computation is lost we can always re-compute
 - Issues with samples?
- > Commutative <u>Reduce</u>: allows for re-order of operations
 - \succ Reduce(A,B) = Reduce(B,A)
 - > Example (addition): A + B = B + A

> Associative <u>Reduce</u>: allows for regrouping of operations

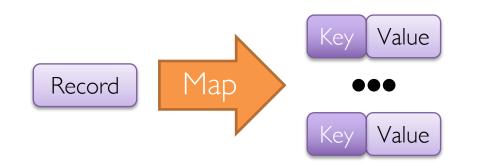
- Reduce(Reduce(A,B), C) = Reduce(A, Reduce(B,C))
- > Example (max): max(max(A,B), C) = max(A, max(B,C))
 - Warning: Floating point operations (e.g. addition) are not guaranteed associative.

Question

- > Suppose our reduction function computes a*b + 1.
- Suppose we have 3 values associated with the key 'cat'. What is the result of the reduction operation?



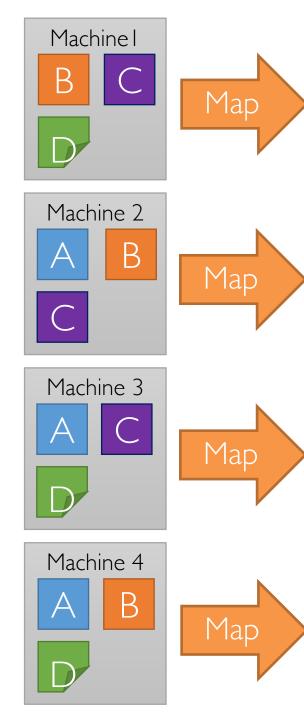
Executing Map Reduce



Machine 2 A B C

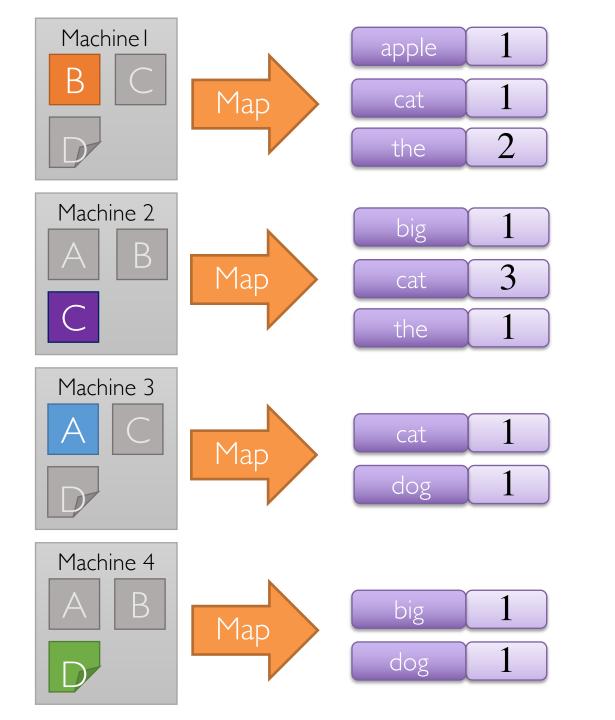
Executing Map Reduce

Distributing the Map Function



Executing Map Reduce

Distributing the Map Function

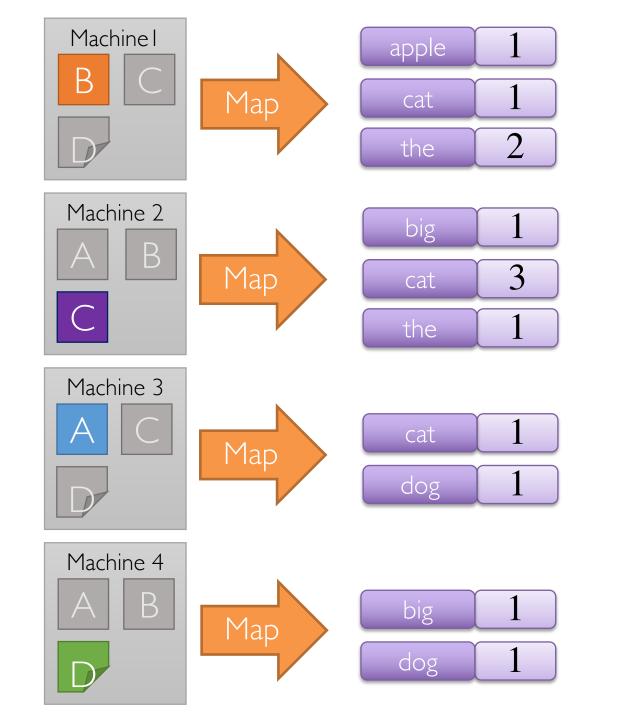


Executing Map Reduce

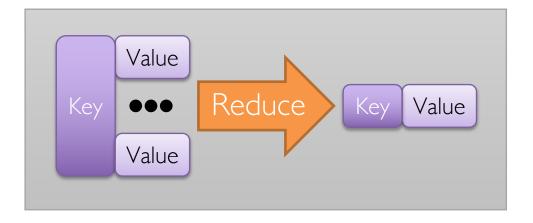
The map function applied to a local part of the big file.

Run in Parallel.

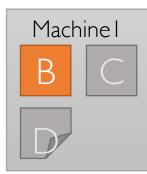
Output is cached for fast recovery on node failure

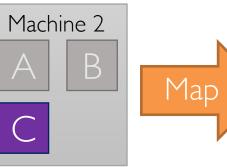


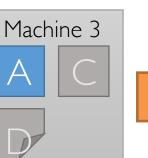
Executing Map Reduce

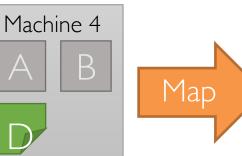


Reduce function can be run on many machines ...

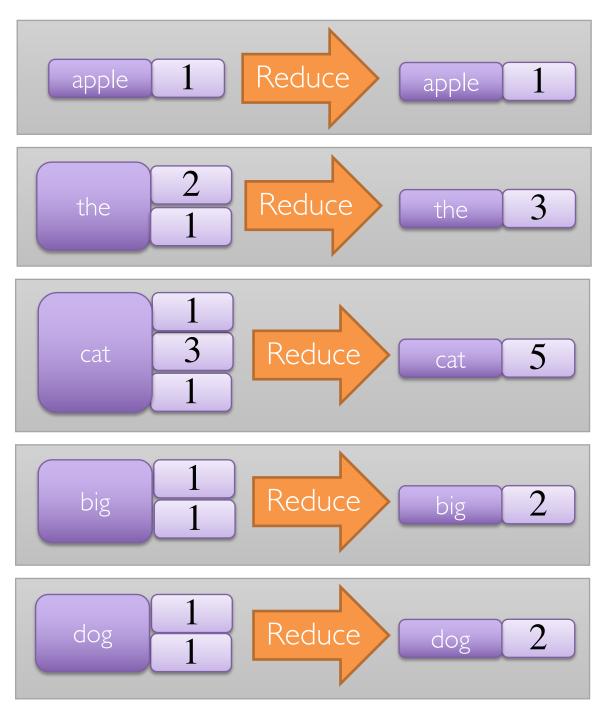


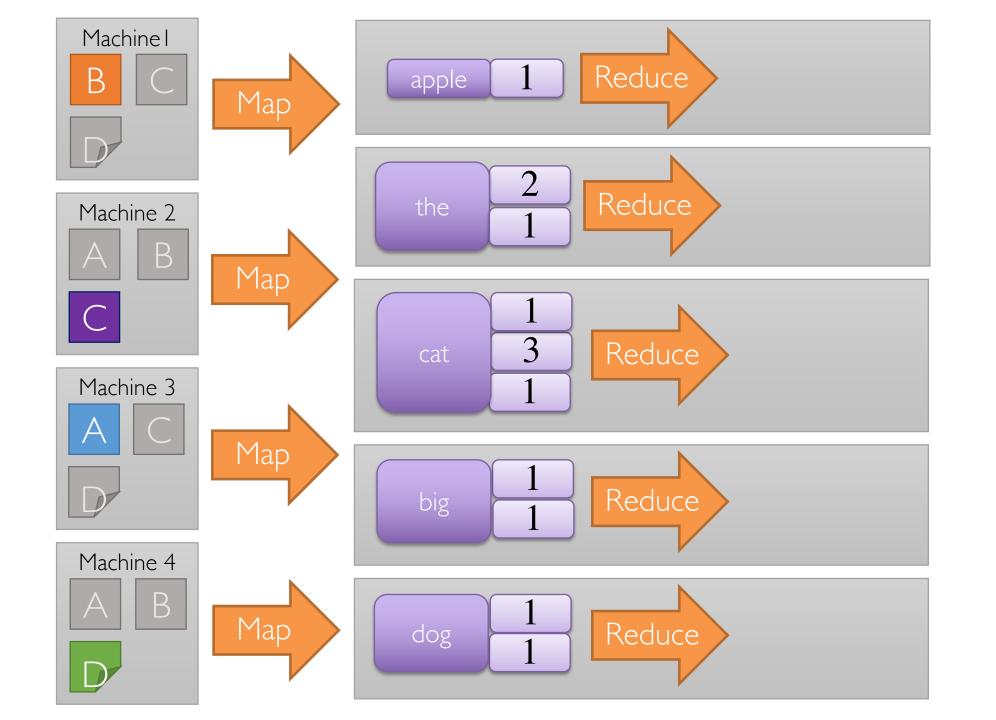


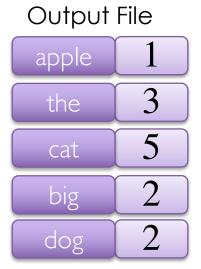


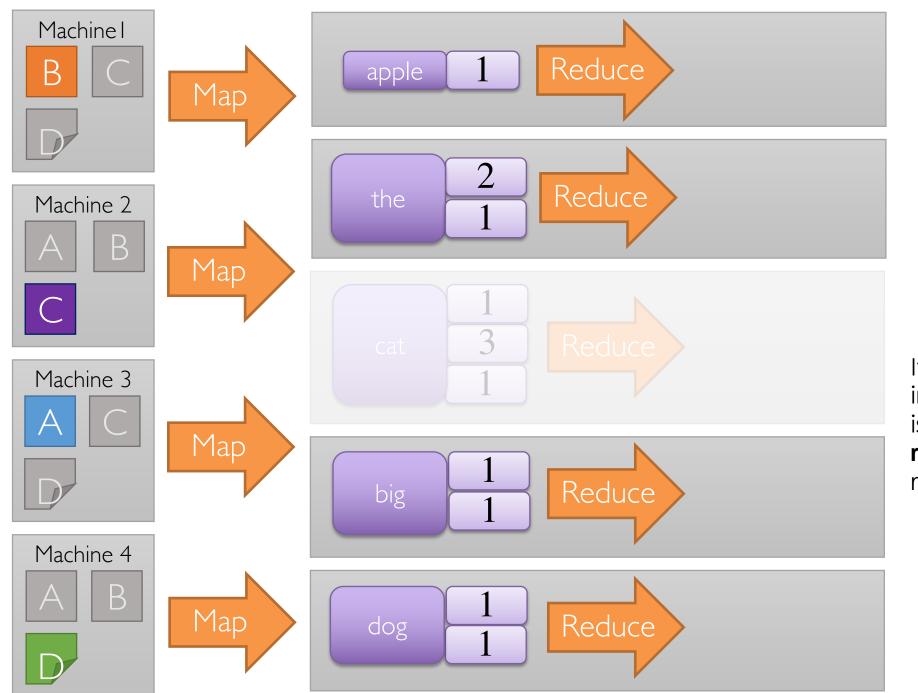


Run in Parallel

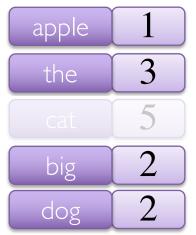








Output File

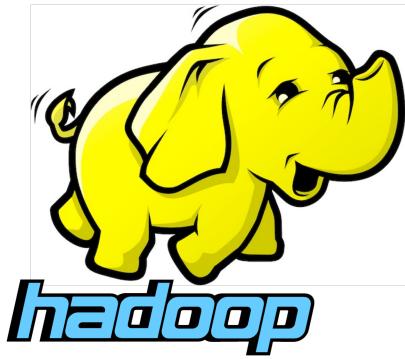


If part of the file or any intermediate computation is lost we can simply **recompute it** without recomputing everything.

Map Reduce Technologies

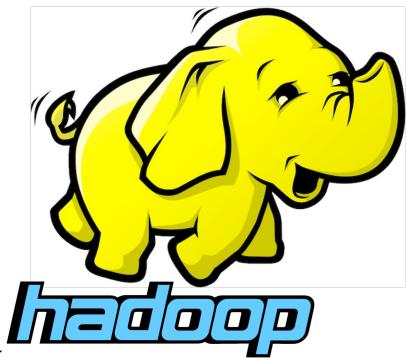
Hadoop

- First open-source map-reduce software
 Managed by Apache foundation
- Based on Google's
 - Google File System
 - MapReduce
- Companies formed around Hadoop:
 - Cloudera
 - Hortonworks
 - > MapR



Hadoop

- > Very active open source ecosystem
- Several key technologies
 - HDFS: Hadoop File System
 - MapReduce: map-reduce compute framework
 - > **YARN:** Yet another resource negotiator
 - Hive: SQL queries over MapReduce
 - ▶ ..
- Downside: Tedious to use!
 - > Joey: Word count example from before is 100s of lines of Java code.



In-Memory Dataflow System Developed at the UC Berkeley AMP Lab

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. HotCloud'10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, NSDI 2012

- Parallel execution engine for big data processing
- General: efficient support for multiple workloads
- Easy to use: 2-5x less code than Hadoop MR
 High level API's in Python, Java, and Scala
- Fast: up to 100x faster than Hadoop MR
 - Can exploit in-memory when available
 - Low overhead scheduling, optimized engine

Spark Programming Abstraction

- Write programs in terms of transformations on distributed datasets
- Resilient Distributed Datasets (RDDs)
 - Distributed collections of objects that can stored in memory or on disk
 - Built via parallel transformations (map, filter, ...)
 - > Automatically rebuilt on failure

RDD: Resilient Distributed Datasets

- Collections of objects partitioned & distributed across a cluster
 - Stored in RAM or on Disk
 - Resilient to failures
- > Operations
 - ➤ Transformations
 - Actions

Operations on RDDs

- Transformations f(RDD) => RDD
 - Lazy (not computed immediately)
 - E.g., "map", "filter", "groupBy"
- > Actions:
 - Triggers computation
 - E.g. "count", "collect", "saveAsTextFile"

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")

Load error messages from a log into memory, then interactively search for various patterns Base RDD

lines = spark.textFile("hdfs://file.txt")

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")

errors = lines.filter(lambda s: s.startswith("ERROR"))

Load error messages from a log into memory, then interactively search for various patterns Transformed RDD

lines = spark.textFile("hdfs://file.txt")

errors = lines.filter(lambda s: s.startswith("ERROR"))

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Driver

Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2]) Driver
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Action

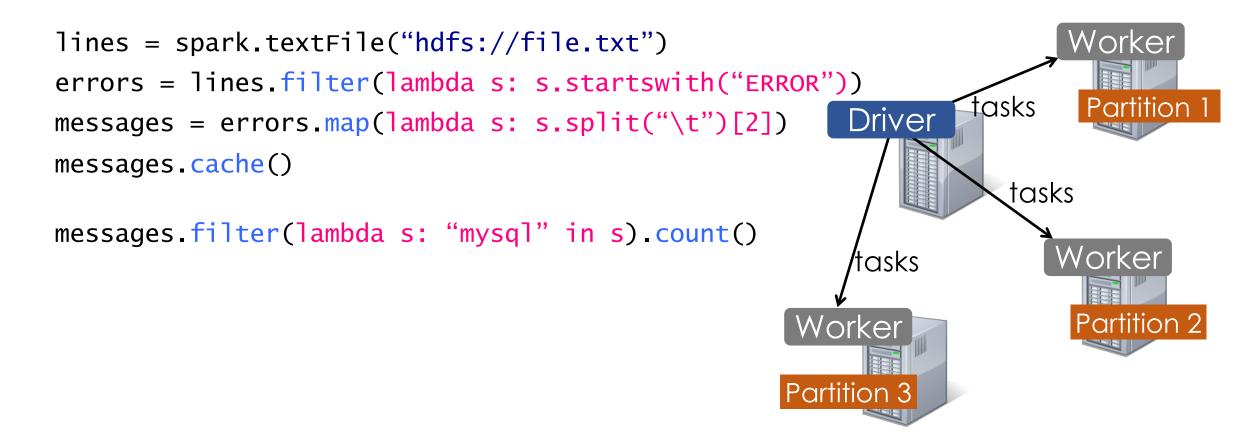
Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

Driver

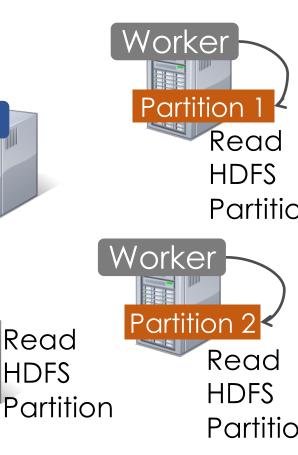
Load error messages from a log into memory, then interactively search for various patterns



Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2]) Driver
messages.cache()

messages.filter(lambda s: "mysql" in s).count()

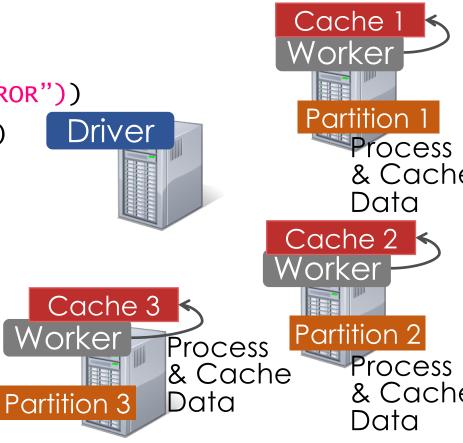


Worker

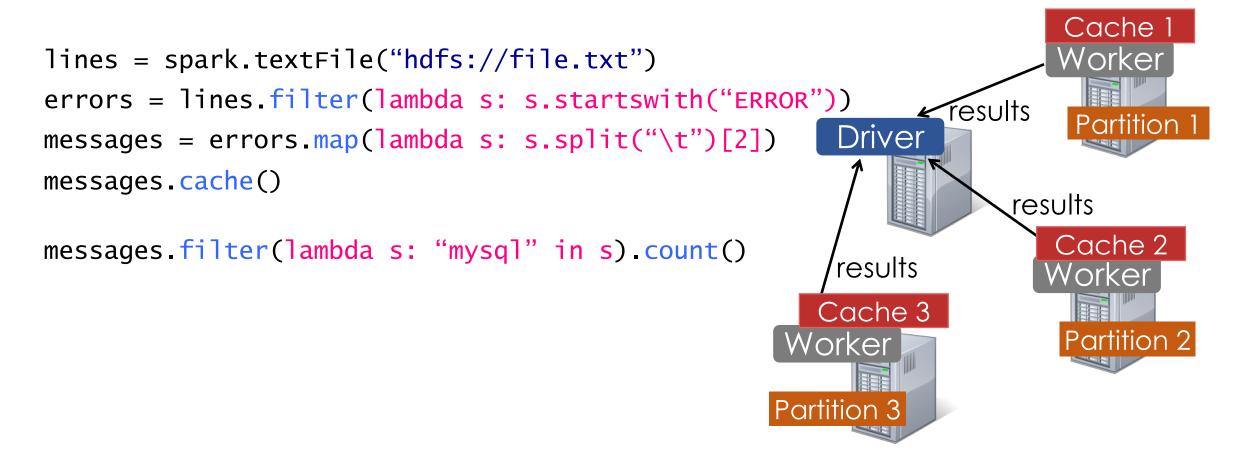
Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()



Load error messages from a log into memory, then interactively search for various patterns



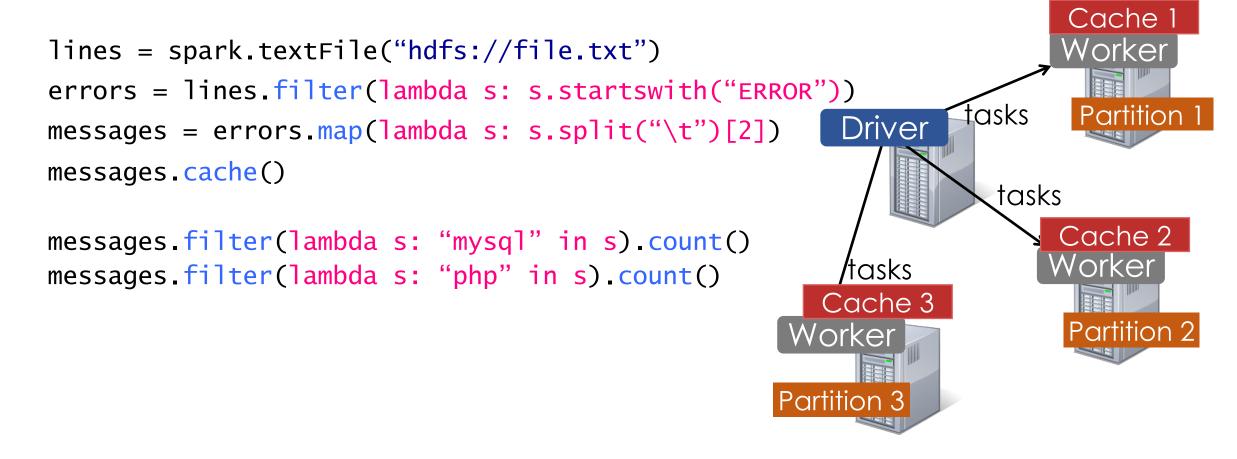
Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()

Driver

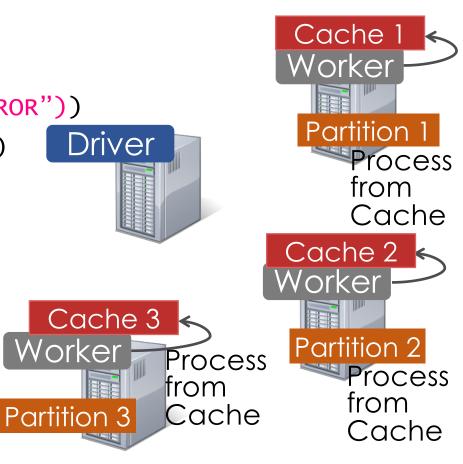
Load error messages from a log into memory, then interactively search for various patterns



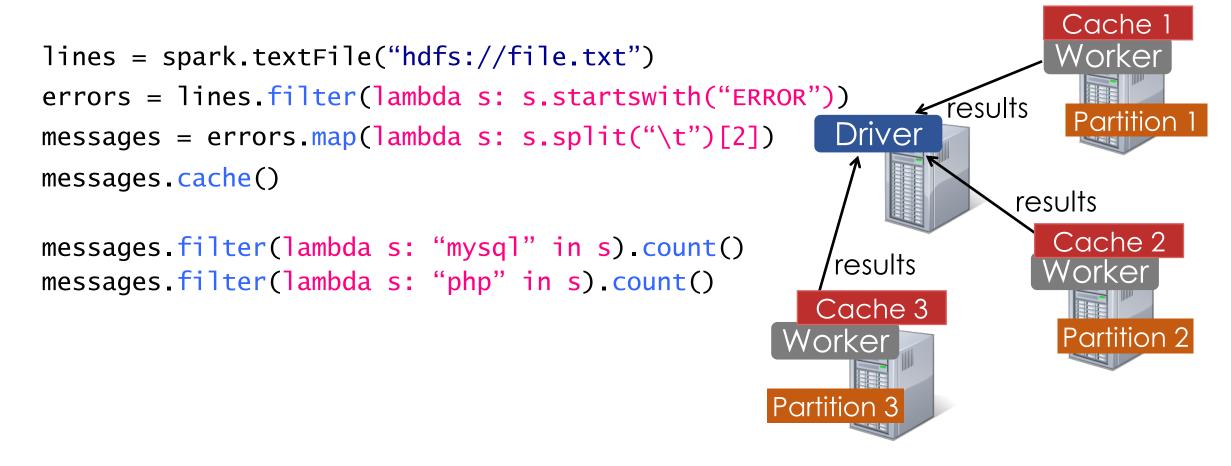
Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()



Load error messages from a log into memory, then interactively search for various patterns



Load error messages from a log into memory, then interactively search for various patterns

lines = spark.textFile("hdfs://file.txt")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2]) Driver
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()

Cache your data → Faster Results *Full-text search of Wikipedia*

- 60GB on 20 EC2 machines
- 0.5 sec from mem vs. 20s for on-disk

Cache 3 Worker Partition 3

Example: Counting Words

moby_dick = spark.textFile("hdfs://books/mobydick.txt")
lines = moby_dick.flatMap(lambda line: line.split(" "))
counts = lines.map(lambda word: (word, 1))
 .reduceByKey(lambda word: (word, 1))

counts.toDF().toPandas()

Much simpler than Hadoop map reduce code!

- \succ The flatMap and map calls produce transformed RDDs.
 - Computation is lazy! Nothing happens until we get to our action.
- > The reduceByKey calls kicks off the actual computing.

Abstraction: Dataflow Operators

map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapwith
join	cogroup	ріре
leftOuterJoin	Cross	save
rightOuterJoin	zip	

.

Abstraction: Dataflow Operators

map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapWith
join	cogroup	pipe
leftOuterJoin	cross	
rightOuterJoin	zip	
leftOuterJoin	cross	pipe save

- - -

Spark Demo

Summary (1/2)

- ETL is used to bring data from operational data stores into a data warehouse.
 - Many ways to organize tabular data warehouse, e.g. star and snowflake schemas.
- Online Analytics Processing (OLAP) techniques let us analyze data in data warehouse.
 - Examples: Pivot table, CUBE, slice, dice, rollup, drill down.
- Unstructured data is hard to store in a tabular format in a way that is amenable to standard techniques, e.g. finding pictures of cats.
 - Resulting new paradigm: The Data Lake.

Summary (2/2)

- > Data Lake is enabled by two key ideas:
 - \succ Distributed file storage.
 - > Distributed computation.
- > Distributed file storage involves replication of data.
 - \succ Better speed and reliability, but more costly.
- > Distributed computation made easier by map reduce.
 - Hadoop: Open-source implementation of distributed file storage and computation.
 - Spark: Typically faster and easier to use than Hadoop.