
Big Data Analytics
Map-Reduce and Spark

Slides by:
Joseph E. Gonzalez
jegonzal@cs.berkeley.edu

?
With revisions by:
Josh Hug
hug@cs.Berkeley.edu

mailto:jegonzal@cs.berkeley.edu
mailto:jegonzal@cs.berkeley.edu


From SQL to Big Data (with SQL)

Ø Last week… 
Ø Databases
Ø (Relational) Database Management Systems
Ø SQL: Structured Query Language

Ø Today
Ø More on databases and database design
Ø Enterprise data management and the data lake
Ø Introduction to distributed data storage and processing
Ø Spark



Data in the Organization
A little bit of buzzword bingo!

Operational Data Store

Data Warehouse

ETL (Extract, Transform, Load)

OLAP (Online Analytics Processing)

Star Schema

Snowflake Schema

CUBE

ROLLUP Drill Down

Data Lake

Schema on Read



Inventory

How we like to think of data in the organization



The reality…

InventorySales
(Asia)

Sales
(US) Advertising



Inventory

Sales
(Asia)

Sales
(US)

Advertising

Operational Data Stores
Ø Capture the now

Ø Many different databases across an 
organization

Ø Mission critical… be careful!
Ø Serving live ongoing business operations
Ø Managing inventory

Ø Different formats (e.g., currency)
Ø Different schemas (acquisitions ...)

Ø Live systems often don’t maintain history

We would like a consolidated, clean, 
historical snapshot of the data.



Inventory

Sales
(Asia)

Sales
(US)

Advertising

Data Warehouse

Data is periodically ETLed into the 
data warehouse:

Ø Extracted from remote sources
Ø Transformed to standard schemas
Ø Loaded into the (typically) 

relational (SQL) data system

ETL

ETL

ETL
ET

L

Collects and organizes 
historical data from 
multiple sources



Extract à Transform à Load (ETL)

Extract & Load: provides a snapshot of operational data
Ø Historical snapshot
Ø Data in a single system
Ø Isolates analytics queries (e.g., Deep Learning) from business 

critical services (e.g., processing user purchase)
Ø Easy!

Transform: clean and prepare data for analytics in a unified 
representation

Ø Difficult à often requires specialized code and tools
Ø Different schemas, encodings, granularities



Inventory

Sales
(Asia)

Sales
(US)

Advertising

Data Warehouse
ETL

ETL

ETL
ET

L

Collects and organizes 
historical data from 
multiple sources

How is data organized in 
the Data Warehouse?



pname category price qty date day city state country

Corn Food 25 25 3/30/16 Wed. Omaha NE USA

Corn Food 25 8 3/31/16 Thu. Omaha NE USA

Corn Food 25 15 4/1/16 Fri. Omaha NE USA

Galaxy Phones 18 30 1/30/16 Wed. Omaha NE USA

Galaxy Phones 18 20 3/31/16 Thu. Omaha NE USA

Galaxy Phones 18 50 4/1/16 Fri. Omaha NE USA

Galaxy Phones 18 8 1/30/16 Wed. Omaha NE USA

Peanuts Food 2 45 3/31/16 Thu. Seoul Korea

Galaxy Phones 18 100 4/1/16 Fri. Seoul Korea

Example Sales Data

Ø Big table: many columns and rows
Ø Substantial redundancy à expensive to store 

and access
Ø Make mistakes while updating

Ø Could we organize the data more 
efficiently?



Multidimensional Data Model

pid timeid locid sales

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

12 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

Sales Fact Table
locid city state country

1 Omaha Nebraska USA

2 Seoul Korea

5 Richmond Virginia USA

pid pname category price

11 Corn Food 25

12 Galaxy 1 Phones 18

13 Peanuts Food 2

timeid Date Day

1 3/30/16 Wed.

2 3/31/16 Thu.

3 4/1/16 Fri.

Locations

Products

Time

Dimension 
Tables

Time Id
1 2 3

25 8 15

30 20 50

8 10 10

25 8 15

30 20 50

8 10 10

25 8 15

30 20 50

8 10 10

11
12

13
1

2
5

Pr
od

uc
t I

d

Lo
catio

n Id
Ø Multidimensional “Cube” 

of data



The Star Schema

pid timeid locid sales
Sales Fact Table

locid city state country

pid pname category price timeid Date Day

Locations

Products Time

ß This looks like a star …



The Star Schema

ß This looks like a star …



The Star Schema

ß This looks like a star …



The Snowflake Schema

ß This looks like a snowflake …

See CS 186 for more!



Online Analytics Processing (OLAP)

Users interact with multidimensional data:

Ø Constructing ad-hoc and often complex SQL queries

Ø Using graphical tools that to construct queries
Ø e.g. Tableau

Let’s discuss some common types of queries used in OLAP.



Cross Tabulation (Pivot Tables)

Ø Aggregate data across pairs of dimensions
Ø Pivot Tables: graphical interface to select dimensions and 

aggregation function (e.g., SUM, MAX, MEAN)
Ø GROUP BY queries

Ø Related to contingency tables and marginalization in stats.

Ø What about many dimensions?

Item Color Quantity
Desk Blue 2

Desk Red 3

Sofa Blue 4

Sofa Red 5

Item
Desk Sofa Sum

C
ol

or

Blue 2 4 6
Red 3 5 8
Sum 5 9 14



80 27 75

63 38 75

63 38 75

63 38 75

48

100

28

176

Cube Operator
Ø Generalizes cross-

tabulation to higher 
dimensions.

Time Id
1 2 3

5

Pr
od

uc
t I

d

Lo
catio

n Id *

25 8 15

30 20 50

8 10 10

25 8 15

30 20 50

8 10 10

11
12

13
1

2

25 8 15

30 20 50

8 10 10

ØIn SQL:
SELECT Item, Color, SUM(Quantity) AS QtySum
FROM Furniture 
GROUP BY CUBE (Item, Color);

Item Color Quantity
Desk Blue 2
Desk Red 3
Sofa Blue 4
Sofa Red 5

Item Color QtySum

Desk Blue 2

Desk Red 3

Desk * 5

Sofa Blue 4

Sofa Red 5

Sofa * 9

* * 14

* Blue 6

* Red 8

What is here?

63 38 75

48

100

28

176
75 176

63 38 75

48

100

28

176

*

*



O
LA

P 
Q

ue
rie

s
Ø Slicing: selecting a value for a dimension

Ø Dicing: selecting a range of values in multiple dimension

25 8 15

30 20 50

8 10 10

3 7 6

9 2

33 42 5

25 8 15

30 20 50

8 10 10

3 7 6

9 2

33 42 5

25 15

30 13 42

8 5 7

3 7 6

9

33

25 8 15

30

8
2

42 5

20 50

10 10
2

42 5

20 50

10 10



Ø Rollup: Aggregating along a dimension

Ø Drill-Down: de-aggregating along a dimension

25 8 15

30 20 50

8 10 10

3 7 6

9 2

33 42 5

25 8 15

30 20 50

8 10 10
25 8 15

30 20 50

8 10 10

3 7 6

9 2

33 42 5

25 8 15

30 20 50

8 10 10

93 91 56

59 42 67

87 120 75

25 8 15

30 20 50

8 10 10

3 7 6

9 2

33 42 5

25 8 15

30 20 50

8 10 10
Day 1

Day 2
Day 3

15 6 8

23 10 36

4 7 5

15 6 8

23 10 36

4 7 5

15 6 8

23 10 36

4 7 5

15 6 8

23 10 36

4 7 5

15 6 8

23 10 36

4 7 5

15 6 8

23 10 36

4 7 5
Day 1

Day 2
Day 3

O
LA

P 
Q

ue
rie

s Similar to CUBE



Reporting and Business Intelligence (BI)
Ø Use high-level tools to interact with their data:

Ø Automatically generate SQL queries
Ø Queries can get big!

Ø Common! 



Inventory

Sales
(Asia)

Sales
(US)

Advertising

Data Warehouse
ETL

ETL

ETL
ET

L

Collects and organizes 
historical data from 
multiple sources

So far …
Ø Star Schemas
Ø Data cubes
Ø OLAP Queries



Sales
(Asia)

Sales
(US)

Data Warehouse
ETL
ETL

ETL

ETL

Collects and organizes 
historical data from 
multiple sources

Inventory

Advertising

Photos & Videos

It is Terrible!

ETL
 ?

Text/Log Data

Ø How do we deal with semi-
structured and unstructured 
data?

Ø Do we really want to force a 
schema on load?



Data Warehouse
Collects and organizes 
historical data from 
multiple sources

Ø How do we deal with semi-
structured and unstructured 
data?

Ø Do we really want to force a 
schema on load?

iid date_taken is_cat is_grumpy image_data

45123
1333

01-22-2016 1 1

47234
2122

06-17-2017 0 1

57182
7231

03-15-2009 0 0

23847
2733

05-18-2018 0 0

Unclear what a good schema for this image 
data might look like. Something like above will 
work, but it is inflexible!



Sales
(Asia)

Sales
(US)

ETL

ETL

ETL

ETL

Inventory

Advertising

Photos & Videos

It is Terrible!

ET
L ?

Text/Log Data

Data Lake
Store a copy of all the data 

Ø in one place 

Ø in its original “natural” form

Enable data consumers to choose 
how to transform and use data.

Ø Schema on Read

*Still being defined…[Buzzword Disclaimer]

*

What could go wrong?



The Dark Side of Data Lakes
Ø Cultural shift: Curate à Save Everything!

Ø Noise begins to dominate signal

Ø Limited data governance and planning
Example: hdfs://important/joseph_big_file3.csv_with_json

Ø What does it contain? 
Ø When and who created it?

Ø No cleaning and verification à lots of dirty data

Ø New tools are more complex and old tools no longer work

Enter the data scientist



A Brighter Future for Data Lakes
Enter the data scientist

Ø Data scientists bring new skills
Ø Distributed data processing and cleaning
Ø Machine learning, computer vision, and statistical sampling

Ø Technologies are improving
Ø SQL over large files 
Ø Self describing file formats (e.g. Parquet) & catalog managers

Ø Organizations are evolving
Ø Tracking data usage and file permissions
Ø New job title: data engineers



How do we store and compute on 
large unstructured datasets
Ø Requirements:

Ø Handle very large files spanning multiple computers
Ø Use cheap commodity devices that fail frequently
Ø Distributed data processing quickly and easily

Ø Solutions:
Ø Distributed file systems à spread data over multiple machines

Ø Assume machine failure is common à redundancy 
Ø Distributed computing à load and process files on multiple 

machines concurrently
Ø Assume machine failure is common à redundancy 
Ø Functional programming computational pattern à parallelism



Distributed File Systems
Storing very large files



Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File
How do we store and access very 
large files across cheap
commodity devices ?



Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

Machine1 Machine 2 Machine 3 Machine 4



Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big FileB

C D

B

C D

B

C D

AAA Ø Split the file into smaller parts.
Ø How?

Ø Ideally at record 
boundaries

Ø What if records are big?



Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

C DC DC D

AAA

BBB



Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

DDD

AAA BBB

CCC



Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

DDD

AAA BBB C
C

C



Machine1 Machine 2 Machine 3 Machine 4

Fault Tolerant Distributed File Systems

[Ghemawat et al., SOSP’03]

Big File

AAA BBB C
C

C
DDD



Ø Split large files over multiple machines
Ø Easily support massive files spanning machines

Ø Read parts of file in parallel
Ø Fast reads of large files

Ø Often built using cheap commodity
storage devices

Big File

Fault Tolerant Distributed File Systems

Cheap commodity storage 
devices will fail!

Machine 2

A B
C
Machine 4

A B
D

Machine 3

A C
D

Machine1

B C
D



Machine1 Machine 2 Machine 3 Machine 4

[Ghemawat et al., SOSP’03]

Big File

AAA BBB C
C

C
DDD

Fault Tolerant Distributed File Systems 
Failure Event



Fault Tolerant Distributed File Systems 
Failure Event

[Ghemawat et al., SOSP’03]

Big File

Machine 2 Machine 4

AA BB
C D

Machine 3

A C
D

Machine1

B C
D



Fault Tolerant Distributed File Systems 
Failure Event

[Ghemawat et al., SOSP’03]

Big File

Machine 2 Machine 4

AA BB
C D
A
C

B
D



Fault Tolerant Distributed File Systems 
Failure Event

[Ghemawat et al., SOSP’03]

Big File

Machine 2 Machine 4

AA BB
C D

A

C

B

D



Map-Reduce
Distributed Aggregation
Computing across very large files



Interacting With the Data

Request 
Data

 Sa
mple

Compute
Locally

Good for smaller datasets
Ø Faster more natural 

interaction
Ø Lots of tools!

⌃ =
M

r2Data

f✓(r)

Algorithm

Sa
mple of D

ata

Algorithm
Cluster
Compute

Query:f✓
Response:⌃

⌃ =
M

r2Data

f✓(r)

Good for bigger 
datasets and compute 
intensive tasks



How would you 
compute the number of occurrences 

of each word in all the books 
using a team of people?



Simple Solution



Simple Solution
1) Divide Books Across Individuals



Simple Solution
1) Divide Books Across Individuals

Word Count

Apple 2

Bird 7

…

Word Count

Apple 0

Bird 1

…

2) Compute Counts Locally



Simple Solution
1) Divide Books 
Across Individuals

Word Count

Apple 2

Bird 7

…

Word Count

Apple 0

Bird 1

…

2) Compute Counts Locally 3) Aggregate Tables

Word Count

Apple 2

Bird 8

…



The Map Reduce Abstraction

MapRecord

ValueKey

ValueKey

Reduce
Value

Key

Value

Reduce(word, counts) {
sum = 0
for count in counts:

sum += count
emit (word, SUM(counts))

}

ValueKey

Example: Word-Count

[Dean & Ghemawat, OSDI’04]

Map(book):
for (word in set(book)):

emit (word, book.count(word)) 
Key Value



The Map Reduce Abstraction (Simpler)

MapRecord

ValueKey

ValueKey

Reduce
Value

Key

Value

Reduce(word, counts) {
sum = 0
for count in counts:

sum += count
emit (word, SUM(counts))

}

ValueKey

Example: Word-Count

[Dean & Ghemawat, OSDI’04]

Map(book):
for (word in book):

emit (word, 1)
Key Value



The Map Reduce Abstraction (General)

MapRecord

ValueKey

ValueKey

Map(record, f):
for (key in record):

emit (key, f(key)) 
Key Value

Reduce
Value

Key

Value

Reduce(key, values, f) {
agg = f(values[0], values[1])
for value in values[2:]:

agg = f(agg, value)
emit (word, agg)

}

ValueKey

Example: Word-Count

Map: Deterministic
Reduce: Commutative and Associative

[Dean & Ghemawat, OSDI’04]



Key properties of Map And Reduce
Ø Deterministic Map: allows for re-execution on failure

Ø If some computation is lost we can always re-compute
Ø Issues with samples?

Ø Commutative Reduce: allows for re-order of operations
Ø Reduce(A,B) = Reduce(B,A)
Ø Example (addition): A + B = B + A

Ø Associative Reduce: allows for regrouping of operations
Ø Reduce(Reduce(A,B), C) = Reduce(A, Reduce(B,C))
Ø Example (max): max(max(A,B), C) = max(A, max(B,C))

Ø Warning: Floating point operations (e.g. addition) are not guaranteed 
associative.



Question

Ø Suppose our reduction function computes a*b + 1.

Ø Suppose we have 3 values associated with the key ‘cat’. 
What is the result of the reduction operation?

Reduce
3

cat

1

???cat2



Executing Map Reduce

MapRecord

ValueKey

ValueKey



Executing Map Reduce

Machine 2

A B
C

Machine 4

A B

D

Machine 3

A C
D

Machine1

B C

D

MapMapMapMap Distributing the Map Function



Executing Map Reduce

Machine 2

A B
C

Machine 4

A B

D

Machine 3

A C
D

Machine1

B C

D

Map

Map

Map

Map

Distributing the Map Function



Executing 
Map 

ReduceMachine 2

A B
C

Machine 4

A B

D

Machine 3

A C
D

Machine1

B C

D

Map

Map

Map

Map

The map function 
applied to a local 
part of the big file.

Run in Parallel.

1apple

1cat

2the

1big

3cat

1the

1cat

1dog

1big

1dog
Output is cached for fast recovery on node failure



Executing 
Map 

ReduceMachine 2

A B
C

Machine 4

A B

D

Machine 3

A C
D

Machine1

B C

D

Map

Map

Map

Map
1apple

1cat

2the

1big

3cat

1the

1cat

1dog

1big

1dog

Reduce
Value

Key

Value

ValueKey

Reduce function can be run on many 
machines …



Reduce

Machine 2

A B
C

Machine 4

A B

D

Machine 3

A C
D

Machine1

B C

D

Map

Map

Map

Map

Reduce 2big
1

big 1

1apple Reduce 1apple

2the 1 Reduce 3the

3
1

Reduce
1

cat 5cat

Reduce 2dog
1
1dog

Ru
n 

in
 P

ar
al

le
l



Reduce

Machine 2

A B
C

Machine 4

A B

D

Machine 3

A C
D

Machine1

B C

D

Map

Map

Map

Map

Reduce1
big 1

1apple Reduce

2the 1 Reduce

3
1

Reduce
1

cat

Reduce1
1dog

2big

1apple
3the
5cat

2dog

Output File



Reduce

Machine 2

A B
C

Machine 4

A B

D

Machine 3

A C
D

Machine1

B C

D

Map

Map

Map

Map

Reduce1
big 1

1apple Reduce

2the 1 Reduce

3
1

Reduce
1

cat

Reduce1
1dog

2big

1apple
3the
5cat

2dog

Output File

If part of the file or any 
intermediate computation 
is lost we can simply 
recompute it without 
recomputing everything.



Map Reduce Technologies



Hadoop

Ø First open-source map-reduce software
Ø Managed by Apache foundation

Ø Based on Google’s
Ø Google File System
Ø MapReduce 

Ø Companies formed around Hadoop:
Ø Cloudera
Ø Hortonworks
Ø MapR



Hadoop

Ø Very active open source ecosystem

Ø Several key technologies
Ø HDFS: Hadoop File System
Ø MapReduce: map-reduce compute framework
Ø YARN: Yet another resource negotiator
Ø Hive: SQL queries over MapReduce
Ø … 

Ø Downside: Tedious to use!
Ø Joey: Word count example from before is 100s of lines of Java code.



In-Memory Dataflow System

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. HotCloud’10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant 
Abstraction for In-Memory Cluster Computing, NSDI 2012

Developed at the UC Berkeley AMP Lab



What Is
Ø Parallel execution engine for big data processing

Ø General: efficient support for multiple workloads

Ø Easy to use: 2-5x less code than Hadoop MR
Ø High level API’s in Python, Java, and Scala

Ø Fast: up to 100x faster than Hadoop MR
Ø Can exploit in-memory when available
Ø Low overhead scheduling, optimized engine



Spark Programming Abstraction

Ø Write programs in terms of transformations on distributed 
datasets

Ø Resilient Distributed Datasets (RDDs)
Ø Distributed collections of objects that can 

stored in memory or on disk
Ø Built via parallel transformations (map, filter, …)
Ø Automatically rebuilt on failure

Slide provided by M. Zaharia



RDD: Resilient Distributed Datasets

Ø Collections of objects partitioned & distributed 
across a cluster 
Ø Stored in RAM or on Disk
Ø Resilient to failures

Ø Operations
Ø Transformations
Ø Actions



Operations on RDDs

Ø Transformations f(RDD) => RDD
§ Lazy (not computed immediately)
§ E.g., “map”, “filter”, “groupBy”

Ø Actions:
§ Triggers computation
§ E.g. “count”, “collect”, “saveAsTextFile”



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

Worker

Worker

Worker

Driver



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”) Worker

Worker

Worker

Driver



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

Base RDD
Worker

Worker

Worker

Driver

lines = spark.textFile(“hdfs://file.txt”)



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

Worker

Worker

Worker

Driver



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

Worker

Worker

Worker

Driver

Transformed RDD



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()
Action



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver tasks

tasks

tasks

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver

Read
HDFS
Partition

Read
HDFS
Partition

Read
HDFS
Partition

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver

Cache 1

Cache 2

Cache 3
Process
& Cache
Data

Process
& Cache
Data

Process
& Cache
Data

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver
results

results

results

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Driver

messages.filter(lambda s: “php” in s).count()

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

tasks

tasks

tasks

Driver

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

Driver

Process
from
Cache

Process
from
Cache

Process
from
Cache

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

Driver
results

results

results

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3



Example: Log Mining
Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://file.txt”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

Driver

Cache your data è Faster Results
Full-text search of Wikipedia
• 60GB on 20 EC2 machines
• 0.5 sec from mem vs. 20s for on-disk

Cache 1

Cache 2

Cache 3

Partition 1

Partition 2

Partition 3



Example: Counting Words
moby_dick = spark.textFile(“hdfs://books/mobydick.txt”)

lines = moby_dick.flatMap(lambda line: line.split(“ ”))

counts = lines.map(lambda word: (word, 1))

.reduceByKey(lambda word: (word, 1))

counts.toDF().toPandas()

Ø The flatMap and map calls produce transformed RDDs.
Ø Computation is lazy! Nothing happens until we get to our 

action.

Ø The reduceByKey calls kicks off the actual computing. 

Much simpler than 
Hadoop map 
reduce code!



Abstraction: Dataflow Operators

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...

map reduce



Abstraction: Dataflow Operators

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...

map reduce



Spark Demo



Summary (1/2)
Ø ETL is used to bring data from operational data stores into a 

data warehouse.
Ø Many ways to organize tabular data warehouse, e.g. star and 

snowflake schemas.

Ø Online Analytics Processing (OLAP) techniques let us analyze 
data in data warehouse.
Ø Examples: Pivot table, CUBE, slice, dice, rollup, drill down.

Ø Unstructured data is hard to store in a tabular format in a way 
that is amenable to standard techniques, e.g. finding pictures 
of cats.
Ø Resulting new paradigm: The Data Lake.



Summary (2/2)

Ø Data Lake is enabled by two key ideas:
Ø Distributed file storage.
Ø Distributed computation.

Ø Distributed file storage involves replication of data.
Ø Better speed and reliability, but more costly.

Ø Distributed computation made easier by map reduce.
Ø Hadoop: Open-source implementation of distributed file 

storage and computation.
Ø Spark: Typically faster and easier to use than Hadoop.


