
Data 100, Summer 2020

Homework #5

Due Date: Sunday, July 19th at 11:59 PM

Total Points: 26

Submission Instructions

You must submit this assignment to Gradescope by Sunday, July 19th, at 11:59
PM. While Gradescope accepts late submissions, you will not receive any credit for a late
submission if you do not have prior accommodations (e.g. DSP).

You can work on this assignment in any way you like.

• One way is to download this PDF, print it out, and write directly on these pages (we’ve
provided enough space for you to do so). Alternatively, if you have a tablet, you could
save this PDF and write directly on it.

• Another way is to use some form of LaTeX. Overleaf is a great tool.

• You could also write your answers on a blank sheet of paper.

Regardless of what method you choose, the end result needs to end up on Gradescope,
as a PDF. If you wrote something on physical paper (like options 1 and 3 above), you will
need to use a scanning application (e.g. CamScanner) in order to submit your work.

When submitting on Gradescope, you must assign pages to each question correctly (it
prompts you to do this after submitting your work). This significantly streamlines the
grading process for our tutors. Failure to do this may result in a score of 0 for any questions
that you didn’t correctly assign pages to. If you have any questions about the submission
process, please don’t hesitate to ask on Piazza.

Collaborators

Data science is a collaborative activity. While you may talk with others about the home-
work, we ask that you write your solutions individually. If you do discuss the assignments
with others please include their names at the top of your submission.
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Homework #5 2

Properties of Simple Linear Regression
1. (7 points) In Lecture 12, we spent a great deal of time talking about simple linear

regression, which you also saw in Data 8. To briefly summarize, the simple linear re-
gression model assumes that given a single observation x, our predicted response for this
observation is ŷ = θ̂0 + θ̂1x.

In Lecture 12, we saw that the θ̂0 and θ̂1 that minimize the average L2 loss for the simple
linear regression model are:

θ̂0 = ȳ − θ̂1x̄

θ̂1 = r
σy
σx

Or, rearranging terms, our predictions ŷ are:

ŷ = ȳ + rσy
x− x̄
σx

(a) (3 points) As we saw in lecture, a residual ei is defined to be the difference between
a true yi and predicted ŷi. Specifically, ei = yi − ŷi.
Prove, using the equation for ŷ above, that

∑n
i=1 ei = 0.

(b) (2 points) Using your result from part a, prove that ȳ = ¯̂y.

(c) (2 points) Prove that (x̄, ȳ) is on the simple linear regression line.
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Geometric Perspective of Least Squares

2. (7 points) In Lecture 13, we viewed both the simple linear regression model and the
multiple linear regression model through the lens of linear algebra. The key geometric
insight was that if we train a model on some design matrix X and true response vector
Y, our predicted response Ŷ = Xθ̂ is the vector in span(X) that is closest to Y.

In the simple linear regression case, our optimal vector θ is θ̂ = [θ̂0, θ̂1]
T , and our design

matrix is

X =


1 x1
1 x2
...

...
1 xn

 =

 | |1 ~x
| |



This means we can write our predicted response vector as Ŷ = X
[
θ̂0
θ̂1

]
, and also as

Ŷ = θ̂01 + θ̂1~x.

Note, in this problem, ~x refers to the n-length vector [x1, x2, ..., xn]T . In other words, it
is a feature, not an observation.

For this problem, assume we are working with the simple linear regression model, though
the properties we establish here hold for any linear regression model that contains an
intercept term.

(a) (3 points) Using the geometric properties from lecture, prove that
∑n

i=1 ei = 0.

Hint: Recall, we define the residual vector as e = Y− Ŷ, and e = [e1, e2, ..., en]T .
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(b) (2 points) Explain why the vector ~x (as defined in the problem) and the residual
vector e are orthogonal. Hint: Two vectors are orthogonal if their dot product is 0.

(c) (2 points) Explain why the predicted response vector Ŷ and the residual vector e
are orthogonal.
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Properties of a Linear Model With No Constant Term

Suppose that we don’t include an intercept term in our model. That is, our model is now
simply ŷ = γx, where γ is the single parameter for our model that we need to optimize.
(In this equation, x is a scalar, corresponding to a single observation.)

As usual, we are looking to find the value γ̂ that minimizes the average squared loss
(“empirical risk”) across our observed data {(xi, yi)}, i = 1, . . . , n.

R(γ) =
1

n

n∑
i=1

(yi − γxi)2

The normal equations derived in lecture no longer hold. In this problem, we’ll derive a
solution to this simpler model. We’ll see that the least squares estimate of the slope in
this model differs from the simple linear regression model, and will also explore whether
or not our properties from the previous problem still hold.

3. (4 points) Use calculus to find the minimizing γ̂. That is, prove that

γ̂ =

∑
xiyi∑
x2i

Note: This is the slope of our regression line, analogous to θ̂1 from our simple linear
regression model.
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4. (8 points) For our new simplified model, our design matrix is

X =


x1
x2
...
xn

 =

 |~x
|


And so our predicted response vector Ŷ can be expressed as Ŷ = γ̂~x. (~x here is defined
the same way it was in Question 2.)

Earlier in this homework, we established several properties that held true for the simple
linear regression model that contained an intercept term. For each of the following four
properties, state whether or not they still hold true even when there isn’t an intercept
term. Be sure to justify your answer.

(a) (2 points)
∑n

i=1 ei = 0.

(b) (2 points) The column vector ~x and the residual vector e are orthogonal.

(c) (2 points) The predicted response vector Ŷ and the residual vector e are orthogonal.

(d) (2 points) (x̄, ȳ) is on the regression line.
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